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Laboratory: BACKTRACKING 

I. THEORETICAL ASPECTS 

 
1. Introduction 
 

Backtracking is a general algorithm for finding all solutions of a problem of calculation algorithm 

that is based on building incremental candidate solutions, each candidate partially abandoned as soon 

as it becomes clear that he has no chance to be a valid solution. 

 

The backtracking algorithm applies generally when we want to determine all solutions of a problem 

or if we want to find a solution to a programming problem and we do not have available another 

algorithm. It is a last resort usually because the backtracking algorithm requires a very high 

calculation time, with polynomial complexity. 

 

The algorithm only applies if: 

1. The solution of the problem can be written as an array (vector) of finite size S=(x1,x2,x3...xn) 

2. There is a finite set of values that the elements of the array can take 

3. There is a well defined order relationship between the elements of the array. 

 

Warning: Backtracking is used for finding all the solutions to a problem. If you just need one 

solution then you will have to interrupt the program after one candidate solution has been discovered. 

Otherwise the program will continue to run until it has discovered all solutions. If you want to find 

an optimal solution you will have to write a fitness function that quantifies the quality of each 

solution discovered by the backtracking algorithm. This will always take more time than running an 

optimal algorithm in the first place however some problems have no optimal algorithm to find the 

optimal solution. 

 

Algorithm steps: 

 

1. Construct a partial solution Sk=[x1,x2,x3...xk] and test it 

2. If the solution is valid then display the solution and check if it is the last one. If it is not the 

last solution return to step one and check solution Sk+1. 

3. If the solution is invalid, try another value out of the Sk set (continue step 1) if there are 

untested values in the set. If there are no untested values then continue with index k-1. 

 

Because the logical explanation using mathematical groups and sets is usually hard to follow we also 

present the solution in pseudocode: 

 

Pick any starting point. 

while(Problem is not solved) { 

 For each path from the starting point.{ 

  check if selected path is safe, if yes safe select it 

                  and make recursive call to rest of the problem 

  If recursive call returns true, then return true. 

                else undo the current move and return false. 

 }End For 

 If no solution is valid, return false, NO SOLUTON. 

}End while 
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II. ASSIGNMENT WORKFLOW 

 

 

We have to solve the following classic backtracking problem: 

 

Considering a classic chess board with n columns and n rows you must place n queens in such a way 

that they do not attack each other. Note that a queen can attack any other queen on the same 

horizontal, vertical or diagonal line. 

 

The classic chess board has 8 columns and 8 rows requiring 8 queens however the solutions are hard 

to analyze for a human.  

 

For this reason we will present the example solution using n=4: 
 

 

 

 

 

 

 

 

 

As mentioned in the first part of this presentation backtracking is used to generate all possible 

solutions by simply generating each solution and checking the validity of the solution. 

 

In simple terms the solutions are generated as follows: 

 1. Place first queen at A0. Check conflicts! If no conflicts continue 

 2. Place second queen at B0. Check conflicts! CONFLICT! Move second queen 

 3. Place second queen at B1. Check conflicts! CONFLICT! Move second queen 

 4. Place second queen at B2. Check conflicts! If no conflict continue 

 5. Place third queen… 

 6. ... 

 7. Place first queen at A1... 

 8. … 

... 

 

Graphically we can visualize the brute force algorithm easily: 
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In order to represent this we would start by defining a 2 dimensional array and then storing each 

solution inside it. 

The solution in the array can be checked by seeing if each queen can attack any other queen. As soon 

as one queen is “attackable” then the solution can be rejected.  

Because of this we can discard many solutions by checking the validity of the solution as it is being 

built. When placing queen k check if the new placement conflicts with any of the 1...k-1 queens 

already on the board. If it does the solution can be rejected outright and we can select a new position 

for queen k. By seeing if each newly placed queen conflicts with the queens that already exist on the 

solution board we optimize the searchspace preemptively discarding many solutions. This is the first 

of many steps that can be taken to optimize the backtracking algorithm. There is no sense in building 

invalid solutions if we can detect them as they form. 

 

Note that a lot of solutions can be discarded from the start by theory alone without checking them. 

For example 2 queens will never be able to occupy the same line (or column). It is safe to optimize 

the problem by assuming each queen (1...n) has it's own unique line that it occupies. So it is clear 

that queen k occupies line k alone (1...k...n).  
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As such we can simplify our datastructure from the start: instead of using a 2 dimensional array to 

store the chessboard we can use a single vector (one dimensional array). This simple optimization 

reduces our solution searchspace and drastically reduces our computation time. 

We previously mentioned that the recursive backtracking is easier to implement and understand so 

we will be following the pseudocode in order to create a recursive backtracking program that solves 

the queen problem for n<20. 

The program mus start with the definition of the data structures. We will be using global variables to 

facilitate easier understanding of the functions involved: 

 

#include<stdio.h> 
#include<math.h> 
#include <stdlib.h> 
int a[20]; //vector to store the board (see previous section) 
int n;   //number of  lines, columns, queens 
int nrs;  //number of solutions 

 

 

First we should define a function that can show our solution. Since we are using abstracted 

datastructures a “display” function is advisable: 

 

void afis () 
{ 
    for (int i=1; i<=n;i++) 
    { 
        for (int j=1; j<=n;j++) 
        { 
            if (a[i]==j) { 
            printf ("* ");} 
            else printf ("o "); 
        } 
        printf ("\n"); 
    } 
    printf("\n"); 
    nrs=nrs+1;  //increment the total number of solutions 
} 

 

 

 

The output of this function looks like this for n=8 where * is a queen and o is an empty space on the 

board: 

 

o o o o o o o * 
o o o * o o o o 
* o o o o o o o 
o o * o o o o o 
o o o o o * o o 
o * o o o o o o 
o o o o o o * o 
o o o o * o o o 
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For each queen placement we need to check the viability of the location. In order to do this we must 

go through the list of queens already on the board and check if the position is “attackable”. Because 

this is an important code segment that we will be calling frequently we will split it off in a separate 

function called place. The parameters for place are the row and column that will be checked. 

 

int place(int row,int column) 
{ 
 int i; 
 for(i=1;i<=row-1;++i) 
 { 
   //checking column and diagonal conflicts 
   if(a[i]==column) 
    return 0;   //conflict 
   else 
    if(abs(a[i]-column)==abs(i-row)) 
      return 0; //conflict 
 } 
 return 1; //no conflicts 
} 

 

The function simply returns 1 if there is no conflict for the given position of (row,column) or returns 

0 if the position is attackable. 

Warning: This function works with the global variable a and will only check attackability. It does 

not place any queens or evaluate the ultimate viability of the solution 

 

In order to actually run the algorithm we need to implement the backtracking function: 

 

void pune_dama(int x)    //x is used to indicate k queen 
{ 
    bool v;   //v for viability (boolean variable) 
    if (x>n) afis(); //if we placed the n queens we can show the solution 
    else for (int i=1;i<=n;i++) //otherwise compute the solution k queen 
    { 
         v=true; //hope for the best = assume the solution is viable 
     if (place(x,i)==0) v=false; //check the viability of the solution  
      //for row x and the column is i 
            if (v==true) { 
                a[x]=i; //if the solution is viable place the queen 
    
//invoke the backtracking function for the next queen: 
 
                pune_dama(x+1);  
            }   
        } 
} 
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This will actually open a recursive stack of functions each calling the next k+1 function.  

 

A few questions you should answer to make sure you understand how it works: 

 How many functions (at most) can be opened in the stack at once? 

 What happens if a queen cannot be placed? 

 What happens when the n queen is placed? 

 

 

Now all that remains is to write the main function of the program: 

 

int main () 
{ 
    printf ("Introduceti dimensiunea tablei:"); 
    scanf ("%d",&n);    // read the dimension of the board 
    nrs=0;     //number of solutions at the start? zero 
    pune_dama (1);   //try to place the first queen 
    printf ("Nr de solutii %d",nrs);   
} 
 
 

That's it! The algorithm recursively cascades when we attempt to place the first queen. 

 

The running time depends on the size of the board. For n<=8 the algorithm will run really fast on 

modern computers. For larger n values the running time grows exponentially as the number of viable 

solutions explodes (n=17 has 95815104 solutions, n=20 has 39029188884 viable solutions). If the 

number of viable solutions is so large how many solutions must the backtracking algorithm check in 

order to find them?  

This is why the program is limited to 20 tiles maximum board size (for n=20 the running time would 

be in the neighborhood of 20 hours). 

 

 

Expected results 

n  Number of Solutions 

1 1 

3 0 

4 2 

5 10 

6 4 

8 92 

9 352 

10 724 

11 2680 

13 73712 

15 2279184 

 


