
Data Structures and Algorithms

- 1 -

Laboratory of
Data Structures and Algorithms

DATA STRUCTURES IN C

I. FUNDAMENTALS

1. Introduction
C programming language can process single or grouped variables, which enable global
processing. An example of the second category is the matrix, which is in fact an ordered set
of data of the same type (the order of the elements is realized by indices).

However, often it is useful to group the data other than the one used for matrices. This time
the data are not necessarily of the same type and requires a global processing. This form of
group is called structure.

Reference to elements of such groups doesn’t use indices but a special way that include the
name of structure. Components of the groups can be groups themselves. Furthermore, it is
possible to define a hierarchy of groups.

A very simple example of data structure is the calendar. A calendar date consists of three
elementary date: day, month and year. The day and the year are integers, while the month
could be a string of characters.

2. Declaration of structure
The general syntax for a struct declaration in C is:

struct tag_name
 { type member1;
 type member2;
 …
 } identification_1, identification_2, …, identification_n;

Here tag_name or identification_i are optional in some contexts.

Notes:

- if identification _1, identification _2, …, identification_n are absent, then tag_name
should be present;

- if tag_name is absent, then at least identification 1 should be present.

A variable of the structure type can be declared subsequently:

struct tag_name identification _1, …, identification_n;

Data Structures and Algorithms

- 2 -

Examples:
a. There will be declared the date of birth and date of employment as calendaristic_data's type
structures (composed of day, month, and year):

struct calendar_data
 {int day;
 char month[11];
 int year;
 } birth_date, employment_date;

b. You can omit entering the calendar_data:

struct
 {int day;
 char month[11];
 int year;
 } birth_date, employment_date;

c. In a program we can firstly define the calendar_data as a name of a general structure and
then, subsequently, we declare both the birth_date and the employment_date.:

struct calendar_data
 {int day;
 char month[11];
 int year;
 };
 ...
struct calendar_data birth_date, employment_date;

The previous three code examples will have the same result.

Extrapolating the above ideas, we can easily define a general structure of personal data of
employees of an institution that includes: name, address, place of birth, date of birth, date of
employment, education, gender, etc.

 struct personal_data
 { char name[100];
 char address[1000];
 struct calendar_data birth_date, employment_date;
 char gender;
 };

 struct personal_data manager, employees[1000];

The variable named manager is a structure of personal_data type, and employees[1000] is
an array of structures.

Data Structures and Algorithms

- 3 -

3. The access to the elements of a structure
The access to the elements of a structure can be done in one of the following two ways:

 struct_name.date_name
or

pointer -> date_name

where: - struct_name is the name of structure,

 - date_name is the name of a specific
 component of the structure,

 - pointer is a pointer to that structure.

4. Typedef declarations
By declaring a structure, we introduce a new type.
In general, a name can be assigned to a type, whether it is a predefined type or one defined by
the programmer. This should be done by using the following syntax:

 typedef tip nume_tip;

where

- tip is a predefined type or one previously defined by the programmer;
- nume_tip is the name allocated to the new type.

Example:
By using the statement

 typedef double REAL;

the data
 REAL x, y;

are of the double type.

Data Structures and Algorithms

- 4 -

II. ASSIGNMENT WORKFLOW

1. Write a program that reads the complex numbers from the keyboard and display their
modulus. There will be a global definition (with typedef) for complex numbers (introduced
as a structure).
For a complex number
 z = x + i*y

modulus is the square root of x * x + y * y. The function for extracting the square root is
sqrt and is defined in the header file named math.h. Therefore the modulus of a complex
number will be calculated through a function.
The program will read the complex numbers and will display theirs modulus, till a non-
numeric value will be finally introduced from the keyboard (then the program execution will
be stopped).

O possible solution:

#include<stdio.h>
#include<math.h>

typedef struct {
 double x;
 double y;
 } COMPLEX;
double dmodul(COMPLEX *z);

int main() /* the program reads complex numbers and displays their module */
{
 COMPLEX complex;
 printf("\n Enter the real part and then, after a blank, the imaginary part ");
 printf("\n of the complex number z = a + ib :\n");
 while(scanf("%lf %lf",&complex.x,&complex.y)==2)
 {
 printf("a+ib= %g + i*(%g)\n",complex.x,complex.y);
 printf("modulus = %g \n",dmodul(&complex));
 printf("\n\n Enter the real part and then, after a blank, the imaginary part ");
 printf("\n of the complex number z = a + ib :");
 printf("\n(a non-numeric value will finish the program)\n");
 }
}

double dmodul(COMPLEX *z)
/* calculates and displays the modulus of the complex number z */
{
 return sqrt(z->x * z->x + z->y * z->y);
}

Data Structures and Algorithms

- 5 -

2. Try to introduce in the above program a function for calculating the argument of a complex
number.

If
 z = x + i*y
then
 arg z

is computed in the following way:

a. If x = y = 0, then arg z = 0.

b. If y = 0 and x != 0
 then: if x > 0, then arg z = 0;
 otherwise (which means x<0) then arg z = pi = 3.1415926535.

c. If x = 0 and y != 0
then: if y >0, then arg z = pi/2;
 otherwise (which means y<0) then arg z = 3*pi/2.

d. If x != 0 and y != 0 then
consider
 a = arctg(y/x)

If: x > 0 and y > 0, then arg z = a;
 x > 0 and y < 0, then arg z = 2*pi + a;
 x < 0, then arg z = pi + a.

By using #define we will introduce the constant value of PI in the program. The function
arctan can be finding by using the name atan (we have to include math.h).

3. Split the above program in three files (with .cpp extension) using known principles and
then start compiling the file containing the main function.

4. Write (in a new file) a function:

 void sum_c(COMPLEX *a, COMPLEX *b, COMPLEX *c)

which assign the sum of complex numbers a and b to the resulting number c.

Data Structures and Algorithms

- 6 -

5. Write (in a new file) a function:

 void dif_c(COMPLEX *a, COMPLEX *b, COMPLEX *c)

which assign the difference of complex numbers a and b to the resulting number c.

6. Write (in a new file) a function:

 void mul_c(COMPLEX *a, COMPLEX *b, COMPLEX *c)

which assign the multiplication of complex numbers a and b to the resulting number c.

7. Write (in a new file) a function:

 void div_c(COMPLEX *a, COMPLEX *b, COMPLEX *c)

which assign the division of complex numbers a and b to the resulting number c. What
supplementary steps should you take?

8. Write a program that requires the introduction of two complex numbers and displays the
results of their summing, difference, multiplication and division. The program will call all
previous files written in paragraphs 4-7.

Data Structures and Algorithms

- 7 -

 III. SOLUTIONS

2. L11_2.C

#include<stdio.h>
#include<math.h>
#define PI 3.14159265358979

typedef struct {
 double x;
 double y;
 } COMPLEX;

double dmodul(COMPLEX *z);
double darg(COMPLEX *z);

int main() /* the program reads complex numbers and displays their module and argument */
{
 COMPLEX complex;
 printf("\n Enter the real part and then, after a blank, the imaginary part ");
 printf("\n of the complex number z = a + ib :\n");
 while(scanf("%lf %lf",&complex.x,&complex.y)==2)
 {
 printf("a+ib= %g + i*(%g)\n",complex.x,complex.y);
 printf("modulus=%g \t argument=%g \n",dmodul(&complex),darg(&complex));
 printf("\n\n Enter the real part and then, after a blank, the imaginary part ");
 printf("\n of the complex number z = a + ib :");
 printf("\n(a non-numeric value will finish the program)\n");
 }
}

double dmodul(COMPLEX *z)
/* calculates and displays the modulus of the complex number z */
{
 return sqrt(z->x * z->x + z->y * z->y);
}

double darg(COMPLEX *z)
{
 double a;

 if(z->x==0 && z->y==0)
 return 0.0 ;
 if(z->y==0)
 if(z->x > 0)
 return 0.0;

Data Structures and Algorithms

- 8 -

 else /* y=0 and x<0 */
 return PI;
 if(z->x==0)
 if(z->y > 0)
 return PI/2;
 else /* x=0 and y<0 */
 return (3*PI)/2;

 /* x != 0 and y != 0 */
 a = atan(z->y/z->x);
 if(z->x < 0)
 return a+PI;
 else
 if(z->y < 0) /* x>0 and y<0 */
 return 2*PI+a;
 else /* x>0 and y>0 */
 return a;
}

3.1. L11_3_1.CPP

double dmodul(COMPLEX *z)
/* calculates and displays the modulus of the complex number z */
{
 return sqrt(z->x * z->x + z->y * z->y);
}

3.2. L11_3_2.CPP

double darg(COMPLEX *z)
{
 double a;

 if(z->x==0 && z->y==0)
 return 0.0 ;
 if(z->y==0)
 if(z->x > 0)
 return 0.0;
 else /* y=0 and x<0 */
 return PI;
 if(z->x==0)
 if(z->y > 0)
 return PI/2;
 else /* x=0 and y<0 */
 return (3*PI)/2;

 /* x != 0 and y != 0 */
 a = atan(z->y/z->x);
 if(z->x < 0)
 return a+PI;

Data Structures and Algorithms

- 9 -

 else
 if(z->y < 0) /* x>0 and y<0 */
 return 2*PI+a;
 else /* x>0 and y>0 */
 return a;
}

3.3. L11_3_3.CPP

#include<stdio.h>
#include<math.h>
#define PI 3.14159265358979

typedef struct {
 double x;
 double y;
 } COMPLEX;

#include "l11_3_1.cpp"
#include "l11_3_2.cpp"

int main() /* the program reads complex numbers and displays their module and argument */
{
 COMPLEX complex;
 printf("\n Enter the real part and then, after a blank, the imaginary part ");
 printf("\n of the complex number z = a + ib :\n");
 while(scanf("%lf %lf",&complex.x,&complex.y)==2)
 {
 printf("a+ib= %g + i*(%g)\n",complex.x,complex.y);
 printf("modulus=%g \t argument=%g \n",dmodul(&complex),darg(&complex));
 printf("\n\n Enter the real part and then, after a blank, the imaginary part ");
 printf("\n of the complex number z = a + ib :");
 printf("\n(a non-numeric value will finish the program)\n");
 }
}

4. L11_4.CPP

void sum_c(COMPLEX *a, COMPLEX *b, COMPLEX *c)
{
 c->x = a->x + b->x;
 c->y = a->y + b->y;
}

5. L11_5.CPP

void dif_c(COMPLEX *a, COMPLEX *b, COMPLEX *c)
{
 c->x = a->x - b->x;

Data Structures and Algorithms

- 10 -

 c->y = a->y - b->y;
}

6. L11_6.CPP

void mul_c(COMPLEX *a, COMPLEX *b, COMPLEX *c)
{
 c->x = a->x * b->x + a->y * b->y;
 c->y = a->x * b->y + b->x * a->y;
}

7. L11_7.CPP

void div_c(COMPLEX *a, COMPLEX *b, COMPLEX *c)
{
 double numitor;
 numitor = b->x * b->x + b->y * b->y;
 if(numitor==0)
 exit(1);
 c->x = (a->x * b->x + a->y * b->y) / numitor;
 c->y = (a->y * b->x - a->x * b->y) / numitor;
}

8. L11_8.CPP

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<conio.h>

typedef struct {
 double x;
 double y;
 } COMPLEX;

#include "l11_4.cpp"
#include "l11_5.cpp"
#include "l11_6.cpp"
#include "l11_7.cpp"

int main()

{
 COMPLEX a,b,c;
 printf("\n Enter the real part and then, after a blank, the imaginary part ");
 printf("\n of the complex number a :\n");
 if(scanf("%lf %lf",&a.x,&a.y)!=2)
 {
 printf("\n Error");

Data Structures and Algorithms

- 11 -

 exit(1);
 }
 printf("a = %g + i*(%g)\n",a.x,a.y);

 printf("\n Enter the real part and then, after a blank, the imaginary part ");
 printf("\n of the complex number b :\n");
 if(scanf("%lf %lf",&b.x,&b.y)!=2)
 {
 printf("\n Error");
 exit(1);
 }
 printf("b = %g + i*(%g)\n",b.x,b.y);

 sum_c(&a,&b,&c);
 printf("\na+b = %g + i*(%g)",c.x, c.y);
 dif_c(&a,&b,&c);
 printf("\na-b = %g + i*(%g)",c.x, c.y);
 mul_c(&a,&b,&c);
 printf("\na*b = %g + i*(%g)",c.x, c.y);
 div_c(&a,&b,&c);
 printf("\na/b = %g + i*(%g)\n",c.x, c.y);

 getch();
}

