Asigurarea Calitatii - Quality Assurance, ISSN 1224-5410 Vol. XXIII, Issue 92, October-December 2017 Pages 25-32

Prognostics Methods and Reliability of Electrolytic Capacitors

Titu-Marius I. BĂJENESCU

La Conversion, Switzerland tmbajenesco@bluewin.ch

Abstract

The paper takes a fresh look at new studies, and results obtained, lessons learned and where things stand today. The industry applications are currently at a much more vulnerable position than it appears, regardless of how wonderful its future may look like. A full understanding of the physics and statistics of the defect generation is required to investigate the ultimate reliability limitations for electrolytic capacitors. Reliability and lifetime have to fulfil strong demands.

Keywords: electrolytic capacitors, metallized polymeric film, accelerated aging, failure mechanisms, health monitoring, reliability

References:

- [1] M. Pecht, Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines A Focus on Reliability, John Wiley & Sons, New York, 1994.
- [2] C. S. Kulkarni, A physics-based degradation modeling framework for diagnostic and prognostic studies in electrolytic capacitors, Ph. D. Thesis, Vanderbilt University, May 2013.
- [3] M. Talmor and S. Arueti, "Reliability prediction: The turn-over point", Proceedings of the Annual Reliability and Maintainability Symposium, pp. 254-262, 1997.
- [4] C. Leonard, "MIL-HDBK-217 it's time to rethink it," Electronic Design, pp. 79-82, 1991.
- [5] S. F. Morris, "Use and application of MIL HDBK-217". Solid State Technology, pp. 65-69, 1990.
- [6] N. Vichare, and M. Pecht, "Prognostics and health management of electronics," IEEE Transactions on Components and Packaging Technologies, vol. 29, pp. 222-229, 2006.
- [7] C. Leonard, and M. G. Pecht, "Improved techniques for cost effective electronics", Proceedings of Reliability Maintainability Symposium, pp. 174-182, 1991.
- [8] M. Karyagina, "Designing for fault-tolerance in the commercial environment", Proc. of Reliability Maintainability Symp, pp. 258-262, 1996.
- [9] R. Xu, A. Berduque, Z. Dou, "Further electrolyte development for high temperature aluminum electrolytic capacitors," CARTS USA 2009
- [10] S. Mishra, S. Ganesan, M. Pecht, and J. Xie, "Life consumption monitoring for electronics prognostics", Proceedings of the IEEE Aerospace Conference, vol. 5, pp. 3455-3467, 2004.
- [11] P. Hansen and P. McCluskey, "Failure models in power device interconnects", European Conference on Power Electronics and Applications, pp. 1-9, 2007.
- [12] Z. Dou, R. Xu, A. Berduque, "Low ESR Aluminum Electrolytic Capacitors for Mid-to-High Voltage Applications", CARTS USA 2011.
- [13] A. A. Shapiro, S. X. Ling, S. Ganesan, R. S. Cozy, D. J. Hunter, D. V., Schatzel, M. M. Mojarradi, and E. A. Kolawa, "Electronic packaging for extended mars surface missions", Proc. IEEE Aerospace Conf, vol. Vol 4, pp. 2515-2527, 2004.

Asigurarea Calitatii - Quality Assurance, ISSN 1224-5410 Vol. XXIII, Issue 92, October-December 2017 Pages 25-32

- [14] S. Mishra, S. Ganesan, M. Pecht, and J. Xie, "Life consumption monitoring for electronics prognostics", Proceedings of the IEEE Aerospace Conference, vol. 5, pp. 3455-3467, 2004.
- [15] P. Hansen and P. McCluskey, "Failure models in power device interconnects", European Conference on Power Electronics and Applications, pp. 1-9, 2007.
- [16] M. Pecht and A. Dasgupta, "Physics-of-failure: An approach to reliable product development", Journal of the Institute of Environmental Sciences, vol. 38, pp. 30-34, 1995.
- [17] J. Snook, J. Marshall, and R. M. Newman, "Physics of failure as an integrated part of design for reliability", Annual Reliability and Maintainability Symposium, pp. 46-54, 2003.
- [18] M. Pecht, Prognostics and health management of electronics, J. Wiley, 2008.
- [19] J. M. Albella, C. Gómez-Aleixandre and J. M. Martinez-Duart, J. Appl. Electrochem. 14 (1984) 9.
- [20] T. I. Băjenescu, and M. Bâzu, Component reliability for electronic systems, Artech House, Boston and London, 2010.
- [21] M. Bâzu, and T. Băjenescu, Failure analysis A practical guide for manufacturers of electronic components and systems, J. Wiley, Chichester, 2011.
- [22] Erik Reed, "Characterization of tantalum polymer capacitors", NASA NEPP reports (2005, 2006).
- [23] Erik Reed, J. Kelly, L. Paulson, Reliability of low-voltage tantalum polymer capacitors, CARTS USA 2005, 189-198.
- [24] A. Shrivastava, "Reliability evaluation of liquid and polymer aluminium electrolytic capacitors", Ph. D. Dissertation, Univ. of Maryland, 2014.
- [25] T. I. Băjenescu, and M. Bâzu, Reliability issues of electrolytic capacitors, Asigurarea calității, 78(2014), pp. 26-32.
- [26] T. I. Băjenescu, and M. Bâzu, Failure modes and mechanisms of electrolytic capacitors, Proceedings of the 14th International Conference on Quality and Dependability, Sinaia, Romania, September 17th-19th, 2014, pp. 186-191.
- [27] C. S. Kulkarni, et al. "Physics based electrolytic capacitor degradation models for prognostic studies under thermal overstress", European Conf. Prognostics and health management society, 2012, 1-9.
- [28] *** "Reliability of aluminium electrolytic capacitors", http://www.ieca-inc.com/images/Relaibility_of_Aluminum_Electrolytic_Capacitors.pdf
- [29] Technical note, Judicious use of aluminum electrolytic capacitors, https://www.chemicon.co.jp/e/catalog/pdf/al-e/al-sepa-e/001-guide/al-technote-e-170401.pdf
- [30] Panasonic, Aluminum electrolytic capacitors conductive polymer hybrid aluminum electrolytic capacitors, https://industrial.panasonic.com/content/data/CP/PDF/Alumi/AL_technical_guide_E.pdf