
Data Structures and
Algorithms (DSA)

Course 13
Algorithms

Iulian Năstac

2

Recapitulation
The main application of the heap concept:

A sorting technique (heapsort)

• The heapsort algorithm was invented
by J. W. J. Williams in 1964. In the
same year, R. W. Floyd published an
improved version that could sort an
array in-place, continuing his earlier
research into the treesort algorithm.

3

heapsort (T[1..n])

{

make_heap(T);

for(i = n; i  2; i - -)

{

T[1]  T[i];

sift_down (T[1…i-1], 1)

}

}

4

Example
First task is to obtain a heap tree from an unsorted vector

Start from the following vector (which is not a heap):

4 1 3 2 16 9 10 14 8 7
T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

After make_heap we obtain:

16 14 10 8 7 9 3 2 4 1

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

5

The operation of
HEAPSORT:

(a) The heap data
structure just after it has
been built by
make_heap.

(b)-(j) The heap just
after each call of
sift_down(T[1…i-1], 1).
The value of i at that
time is shown. Only
lightly shaded nodes
remain in the heap.

(k) The resulting sorted
array A

6

Other ordering (or sorting)
algorithms:
• Insertion

• Selection

• Merge sort

• Quicksort

• etc.

7

Ordering methods
• Ordering = arranging items of the same kind,

class or nature, in an ordered sequence.

• For this purpose we consider that the data are a
collection of items of a certain type and each
item comprises one or even more values
(variables), which are decisive in the ordering
that is performed. Such a value is called key.

8

For the C programming language, a sorting
algorithm can be achieved by one of the
following methods:

1. Arranging data (which are sorted) so
that their keys will finally correspond
to the desired order.

2. By ordering an array of pointers (to
the data that must be sorted) in
order to form an ordered set.

9

Note:

• In the following we will discuss only
about sorting unidimensional arrays
(vectors) with numerical data.

10

Insertion sorting algorithm
(Recapitulation)

• Insertion sort is a simple sorting algorithm
that builds the final sorted array (or list)
one item at a time.

• The general idea of sorting by insertion is
to consider (at a time) each element of the
array and insert it into the substring
previously ordered.

• The operation involves a growing
sequence, which is moved to the right.

11

12

13

A brief description of the algorithm in pseudocode is as follows:

procedure insert(T[1..n])
{

local variables i, j, x
for i  2 to n do
{

x  T[i]
j  i -1
while (j>0 and x<T[j]) do

{
T[j+1]  T[j]
j  j – 1

}
T[j+1]  x

}
}

Note: In implementing the above algorithm in C code, we have to keep
in mind that a vector is starting with an zero index.

14

The selection sorting algorithm
(Recapitulation)

• Selection sort is a sorting algorithm,
specifically an in-place comparison sort.

• Selection sort is noted for its simplicity,
and it has performance advantages over
more complicated algorithms in certain
situations, particularly where auxiliary
memory is limited.

How it works
• The algorithm divides the input list into two parts: the

sublist of items already sorted, which is built up from left
to right at the front (left) of the list, and the sublist of
items remaining to be sorted that occupy the rest of the
list.

• Initially, the sorted sublist is empty and the unsorted
sublist is the entire input list.

• The algorithm proceeds by finding the smallest (or
largest, depending on sorting order) element in the
unsorted sublist, exchanging it with the leftmost unsorted
element (putting it in sorted order), and moving the
sublist boundaries one element to the right.

15

16

17

18

A brief description of the algorithm in pseudocode is as follows:

procedure select(T[1..n])
{

local variables i, j, min_j, min_x,
for i  1 to n-1 do

{ min_j  i
min_x  T[i]
for j  i+1 to n do

if T[j] < min_x then
{ min_j  j
min_x  T[j]

}
T[min_j]  T[i]
T[i]  min_x

}
}

Note: In implementing the above algorithm in C code, we have to keep in
mind that a vector is starting with an zero index.

19

Bubblesort algorithm
(Recapitulation)

• Bubble sort is a simple sorting algorithm that
repeatedly steps through the list to be sorted,
compares each pair of adjacent items and swaps
them if they are in the wrong order. The pass
through the list is repeated until no swaps are
needed, which indicates that the list is sorted.

• The algorithm, which is a comparison sort, is
named for the way smaller elements "bubble" to
the top of the list.

• Although the algorithm is simple, it is too slow and
impractical for most problems even when
compared to insertion sort.

20

Shellsort algorithm
(Recapitulation)

• Shellsort is an in-place comparison sort. It can
be seen as either a generalization of sorting
by exchange (bubble sort) or sorting by
insertion (insertion sort).

• The method starts by sorting pairs of
elements far apart from each other, then
progressively reducing the gap between
elements to be compared. Starting with far
apart elements can move some out-of-place
elements into position faster than a simple
nearest neighbor exchange.

• Donald Shell published the first version of this
sort in 1959.

• The running time of Shellsort is
heavily dependent on the gap
sequence it uses.

• For many practical variants,
determining their time complexity
remains an open problem.

21

22

Shell sort method can be defined
as in the following :
1) Start with a gap = n/2, where n is the

number of the elements that will be
sorted.

2) Make a crossing of the vector of items
that are sorted.

3) The gap it halves gap = gap/2 .
4) If gap > 0, then jump to step 2, otherwise

the algorithm stops.

23

Note Each crossing through the
elements involves the following
substeps:
1) i = gap.
2) j = i – gap + 1 .
3) If j > 0 and the elements from the positions: j and
j+gap are not ordered, then we will interchange their
values. Otherwise jump to substep 6.
4) j = j – gap.
5) Jump to substep 3.
6) i = i + 1.
7) If i > n, the crossing is stopped. Otherwise jump to
substep 2.

24

Notes:

• In implementing the above
algorithm in C code, we have to
remember that a vector is starting
with the zero index.

• Therefore, the initialization from the
substep 2) becomes: j = i – gap .

A general perspective
• In computer science an algorithm is a self-

contained step-by-step set of operations to be
performed.

• Algorithms perform calculation, data processing,
and/or automated reasoning tasks.

• Practically, there is an endless variety of algorithms
(but it is quite useful to classify them - see related
books, written by Donald Knuth).

25

An algorithm can be easily
expressed by using a flow chart

• An algorithm is an effective method that can be expressed
within a finite amount of space and time and in a well-defined
formal language for calculating a function.

• Starting from an initial state and initial input (perhaps empty),
the instructions describe a computation that, when executed,
proceeds through a finite number of well-defined successive
states, eventually producing "output" and terminating at a
final ending state.

• The transition from one state to the next is not necessarily
deterministic; some algorithms, known as randomized
algorithms, incorporate random input. 26

Other classical algorithms
• Divide and conquer algorithms

– Divide and conquer (D&C) is an algorithm design paradigm based on
multi-branched recursion. A divide and conquer algorithm works by
recursively breaking down a problem into two or more sub-problems of
the same (or related) type, until these become simple enough to be
solved directly. The solutions to the sub-problems are then combined to
give a solution to the original problem.

• Greedy algorithm
– A greedy algorithm is an algorithm that follows the problem solving

heuristic of making the locally optimal choice at each stage with the hope
of finding a global optimum. In many problems, a greedy strategy does
not in general produce an optimal solution, but nonetheless a greedy
heuristic may yield locally optimal solutions that approximate a global
optimal solution in a reasonable time.

27

Divide and conquer algorithm
• This technique is the basis of efficient algorithms for

all kinds of problems, such as sorting (e.g. quicksort,
merge sort, etc.), multiplying large numbers, syntactic
analysis (e.g., top-down parsers), and computing the
discrete Fourier transform (DFT).

• The name "divide and conquer" is sometimes applied
also to algorithms that reduce each problem to only
one sub-problem, such as the binary search
algorithm for finding a record in a sorted list (or its
analog in numerical computing, the bisection
algorithm for root finding). 28

Greedy algorithm
• A greedy strategy for the traveling salesman

problem (which is of a high computational
complexity) is the following heuristic: "At each stage
visit an unvisited city nearest to the current city".
This heuristic need not find a best solution, but
terminates in a reasonable number of steps; finding
an optimal solution typically requires unreasonably
many steps. In mathematical optimization, greedy
algorithms solve combinatorial problems (of NP
complexity).

29

Notes:
• We can make whatever choice seems best at the moment

and then solve the subproblems that arise later.
• The choice made by a greedy algorithm may depend on

choices made so far but not on future choices or all the
solutions to the subproblem.

• It iteratively makes one greedy choice after another, reducing
each given problem into a smaller one. In other words, a
greedy algorithm never reconsiders its choices.

• This is the main difference from dynamic programming, which
is exhaustive and is guaranteed to find the solution.

• After every stage, dynamic programming makes decisions
based on all the decisions made in the previous stage, and
may reconsider the previous stage's algorithmic path to
solution. 30

Warning!
• Greedy algorithms mostly (but not always) fail to find the

globally optimal solution, because they usually do not
operate exhaustively on all the data.

• They can make commitments to certain choices too early
which prevent them from finding the best overall solution
later.

• For example, all known greedy coloring algorithms for
the graph coloring problem and all other NP-complete
problems do not consistently find optimum solutions.

• Nevertheless, they are useful because they are quick to
think up and often give good approximations to the
optimum.

31

32

With a goal of reaching the largest-sum, at each step, the greedy
algorithm will choose what appears to be the optimal immediate
choice, so it will choose 12 instead of 3 at the second step, and will
not reach the best solution, which contains 99.

Perspective
• Greedy algorithms are often used in ad

hoc mobile networking to efficiently route
packets with the fewest number of hops
and the shortest delay possible.

• They are also used in machine learning,
business intelligence (BI), and artificial
intelligence (AI).

33

Backtracking
• Backtracking is a general algorithm for

finding all solutions of a problem of
calculation algorithm that is based on
building incremental candidate solutions,
each candidate partially abandoned as
soon as it becomes clear that he has no
chance to be a valid solution.

• See the last laboratory…
http://www.euroqual.pub.ro/wp-content/uploads/sda_lab_06_backtracking.pdf

34

Backtracking
• Backtracking depends on:

- user-given "black box procedures" that
define the problem to be solved,

- the nature of the partial candidates,
- how they are extended into complete

candidates.

It is therefore a metaheuristic rather than a specific
algorithm – although, unlike many other meta-
heuristics, it is guaranteed to find all solutions to a finite
problem in a bounded amount of time. 35

36

Analysis of algorithms
efficiency

• The analysis of algorithms is the
determination of the amount of
resources, which are necessary
to execute them.

37

Resources mean:

• The memory space required for storing
the data, which are being processed by
the algorithm.

• The time required for execution of all
specified processes of the algorithm.

38

The study of an algorithm
includes several aspects:

• Designing
• Implementation
• Validation
• Testing:

– Debugging
– Traceability – refers to the ability to link all

product requirements back to the designing plan
(relating to code, and test cases).

• Efficiency evaluation
38

39

Testing Problem
• It can be particularly difficult for large

software, with many lines of codes.

• Usually, the cases used to test can not
cover all possible situations.

• It requires considerable time and
significant computation resources.

39

4040

“ Program testing can at best show the
presence of errors but never their absence…

Nothing is as expensive as making mistakes.”

Edsger Wybe Dijkstra

41

The efficiency of algorithms
• Ideally, for a given problem, is to find

several algorithms and then choose the
best one among them …

• … i.e. to find the most efficient algorithm at
the current time (using available
resources).

41

• The algorithmic efficiency is
very related to the amount of
resources used by that
algorithm.

42

43

An algorithm can be analyzed
in two ways:
• Posteriori (empirical) - analyze the

behavior after the implementation of an
algorithm, by running on different cases.

• A priori (theoretically) - before
implementing and implies quantitative
determination of resources (time, memory,
etc.)

43

44

Notes:
• The big downside of the posteriori

analysis: practically, an algorithm cannot
be tested for any possible extreme cases.

• A priori analysis:
– does not depend on computer or computing

language
– saves time (which could be spent on

programming, especially when running an
inefficient algorithm)

– it allows to study the effectiveness for the cases
of any size 44

45

Improving the computing
speed

• Changing an old computer (with a new
one, more powerful) may lead to solving a
problem 100 times faster (for the same
inputs)  but this increasing is only a
linear one

• only an efficient algorithm can dramatically
improve the solving of a problem with
huge inputs.

45

46

In the following we will be focused
only on the time parameter

• The major objective of efficiency is
considered the execution time.

• Theoretically, other necessary resources
(such as the involved memory) may be
similarly estimated.

46

47

Definition:

• We say that an algorithm requires a time
of the order of t if there is a positive
constant c, and an implementation
(program code) of the algorithm, capable
of solving the problem in each case not
more than ct(n) seconds, where n is the
size of the case under consideration.

47

48

Note:

The c constant actually depends of
the CPU's clock frequency.

48

49

Asymptotic notation

• We note with:
R+ - the complete set of all real positive numbers
N - the complete set of all natural numbers

Considering f : N  R+ as an arbitrary function, we can define
the O notation (or Big-O notation):

49

)}()()()()(|:{)(0
*

0
* nfcntobtainwennforsoNnandRcRNtfO  

50

Notes:

- The Big-O notation is the formal method of
expressing the upper bound of an algorithm's running
time. It's a measure of the longest amount of time it
could possibly take for the algorithm to complete.

- More formally, for non-negative functions, f(n) and
g(n), if there exists an integer and a constant c > 0
such that for all integers , f(n) ≤ c∙g(n), then f(n) is Big
O of g(n). This is denoted as "f(n) = O(g(n))". If
graphed, g(n) serves as an upper bound to the curve
you are analyzing, f(n).

51

The principle of invariance
Two different implementations of the same
algorithm do not differ (in theirs
efficiencies) by more than a multiplicative
constant.
Example:

With two different implementations, requiring t1(n) seconds, and
t2(n) seconds respectively, to solve a problem of size n, it results
that:

021
*)()(nnntcntthatsoRc  

52

Note:

t  O(t)

Usually we are looking for the simplest function
f so that: tO(f)

53

It is obvious that:

n  O(n) , n2  O(n2) , n2  O(n3) , n3  O(n2)

We can say that:

)()(: 22* nOfnOfifRNf  

)2(2)(: * nf OnOfifRNf  

54

We can define relations for
partial order:

• f ≤ g if O(f)  O(g)

• f < g if O(f)  O(g)

55

Properties:

P1: Transitivity
If f  O(g) and g  O(h) then f  O(h)

P2: If f  O(g) then O(f)  O(g)

56

:: * obtainweRNgandf 
a) O(f) = O(g)  f  O(g) and g  O(f)

b) O(f)  O(g)  f  O(g) and g  O(f)

P3:

P4:
*:)),(max()( RNgandfforgfOgfO

where the sum and the product, also, are punctualy
considered.

57

We can define the equivalence
relation as:

f  g if O(f) = O(g)

Note: In the notation O(f) we can replace f with
other equivalent function.

58

Example:

lg(n)  ln(n)  log2(n) or O(lg(n))=O(ln(n))=O(log2n)

This is obvious, since it is always possible to find a
constant c so that: lg(n) ≤ cꞏln(n)

Since:

a
xx

b

b
a log

loglog 

it result that:
)10ln(

1
)ln()ln(

)lg()10ln(
)ln(


nn

nc
n

59

)2(...)()()log()()(log)1(32 nOnOnOnnOnOnOO 

If we denote by O(1) the higher order of the functions bounded by
a constant, then we can obtain the hierarchy:

This hierarchy corresponds to a performance criterion.

For a given problem, we always want to obtain a corresponding
algorithm with its order as much as possible to the left side in the
specified hierarchy.

60

Example:

n3 + 3ꞏn2 + n + 8  O(n3 + (3ꞏn2 + n + 8)) = O(max(n3 , (3ꞏn2 + n + 8)))
= O(n3)

Note:

max(n3 , (3∙n2 + n + 8)) will be n3 for a number, which
is sufficient great (since the increase of the chart for n3 is
faster than any second-degree polynomial even if it is
started from lower values).

61

Algorithms analysis techniques
• There isn't a general formula for analyzing

the efficiency of algorithms.

• This is a matter of judgment, intuition and
experience.

• The flowchart may be useful in order to
find the Big-O of an algorithm.

62

Selection sort

63

- The time for a single execution of the inner loop can be upper
bounded by an a constant.

- For a given i, the inner loop needs a time frame of not more than

b + aꞏ(n - i) units

where b is a constant that denotes the loop initialization.

- A single execution of the external loop needs no more than

c + b + aꞏ(n - i) units

where c is other constant.

Finally, the total time for the algorithm is no more than:







1

1
max))((

n

i
inabcdT units

64

dnbcianaT
n

i

n

i

 








)1()(1
1

1

1

1
max

but:

222
)1()11(21

1

nnnni
n

i








and 11

1

1






n
n

i

It result:

bcdnacbnnT aa )1()(2
2

2max

Therefore the insertion sorting algorithm requires a
runtime of O(n2)

