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Recapitulation
The main application of the heap concept:

A sorting technique (heapsort)

• The heapsort algorithm was invented 
by J. W. J. Williams in 1964. In the 
same year, R. W. Floyd published an 
improved version that could sort an 
array in-place, continuing his earlier 
research into the treesort algorithm.
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heapsort (T[1..n])

{

make_heap(T);

for( i = n; i  2; i - -)

{

T[1]  T[i];

sift_down (T[1…i-1], 1)

}

}
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Example
First task is to obtain a heap tree from an unsorted vector

Start from the following vector (which is not a heap):

4 1 3 2 16 9 10 14 8 7
T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

After make_heap we obtain:

16 14 10 8 7 9 3 2 4 1

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]
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The operation of 
HEAPSORT: 

(a) The heap data 
structure just after it has 
been built by 
make_heap. 

(b)-(j) The heap just 
after each call of 
sift_down(T[1…i-1], 1). 
The value of i at that 
time is shown. Only 
lightly shaded nodes 
remain in the heap. 

(k) The resulting sorted 
array A
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Other ordering (or sorting) 
algorithms:
• Insertion

• Selection

• Merge sort

• Quicksort

• etc.
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Ordering methods
• Ordering = arranging items of the same kind, 

class or nature, in an ordered sequence. 

• For this purpose we consider that the data are a 
collection of items of a certain type and each 
item comprises one or even more values 
(variables), which are decisive in the ordering 
that is performed. Such a value is called key.
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For the C programming language, a sorting 
algorithm can be achieved by one of the 
following methods:

1. Arranging data (which are sorted) so 
that their keys will finally correspond 
to the desired order.

2. By ordering an array of pointers (to 
the data that must be sorted) in 
order to form an ordered set.
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Note:

• In the following we will discuss only 
about sorting unidimensional arrays 
(vectors) with numerical data.
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Insertion sorting algorithm
(Recapitulation)

• Insertion sort is a simple sorting algorithm 
that builds the final sorted array (or list) 
one item at a time.

• The general idea of sorting by insertion is 
to consider (at a time) each element of the 
array and insert it into the substring  
previously ordered. 

• The operation involves a growing 
sequence, which is moved to the right.
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A brief description of the algorithm in pseudocode is as follows: 

procedure insert(T[1..n])
{

local variables  i, j, x
for i  2 to n do
{

x  T[i]
j  i -1
while (j>0 and x<T[j]) do

{
T[j+1]  T[j]  
j  j – 1

}
T[j+1]  x

}
}

Note: In implementing the above algorithm in C code, we have to keep 
in mind that a vector is starting with an zero index.
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The selection sorting algorithm
(Recapitulation)

• Selection sort is a sorting algorithm, 
specifically an in-place comparison sort. 

• Selection sort is noted for its simplicity, 
and it has performance advantages over 
more complicated algorithms in certain 
situations, particularly where auxiliary 
memory is limited.



How it works
• The algorithm divides the input list into two parts: the 

sublist of items already sorted, which is built up from left 
to right at the front (left) of the list, and the sublist of 
items remaining to be sorted that occupy the rest of the 
list. 

• Initially, the sorted sublist is empty and the unsorted 
sublist is the entire input list. 

• The algorithm proceeds by finding the smallest (or 
largest, depending on sorting order) element in the 
unsorted sublist, exchanging it with the leftmost unsorted 
element (putting it in sorted order), and moving the 
sublist boundaries one element to the right.

15
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A brief description of the algorithm in pseudocode is as follows: 

procedure select(T[1..n])
{

local variables  i, j, min_j, min_x,
for i  1 to n-1 do

{ min_j  i
min_x  T[i]
for j  i+1 to n do

if T[j] < min_x then
{ min_j  j
min_x  T[j]

}
T[min_j]  T[i]
T[i]  min_x

}
}

Note: In implementing the above algorithm in C code, we have to keep in 
mind that a vector is starting with an zero index.
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Bubblesort algorithm
(Recapitulation)

• Bubble sort is a simple sorting algorithm that 
repeatedly steps through the list to be sorted, 
compares each pair of adjacent items and swaps 
them if they are in the wrong order. The pass 
through the list is repeated until no swaps are 
needed, which indicates that the list is sorted.

• The algorithm, which is a comparison sort, is 
named for the way smaller elements "bubble" to 
the top of the list. 

• Although the algorithm is simple, it is too slow and 
impractical for most problems even when 
compared to insertion sort.
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Shellsort algorithm
(Recapitulation)

• Shellsort is an in-place comparison sort. It can 
be seen as either a generalization of sorting 
by exchange (bubble sort) or sorting by 
insertion (insertion sort).

• The method starts by sorting pairs of 
elements far apart from each other, then 
progressively reducing the gap between 
elements to be compared. Starting with far 
apart elements can move some out-of-place 
elements into position faster than a simple 
nearest neighbor exchange. 

• Donald Shell published the first version of this 
sort in 1959.



• The running time of Shellsort is 
heavily dependent on the gap
sequence it uses. 

• For many practical variants, 
determining their time complexity 
remains an open problem.

21
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Shell sort method can be defined 
as in the following :
1) Start with a gap = n/2, where n is the 

number of the elements that will be 
sorted.

2) Make a crossing of the vector of items 
that are sorted. 

3) The gap it halves gap = gap/2 .
4) If gap > 0, then jump to step 2, otherwise 

the algorithm stops. 
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Note Each crossing through the 
elements involves the following 
substeps:
1) i = gap.
2) j = i – gap + 1 .
3) If j > 0 and the elements from the positions: j and
j+gap are not ordered, then we will interchange their 
values. Otherwise jump to substep 6.
4) j = j – gap.
5) Jump to substep 3.
6) i = i + 1.
7) If i > n, the crossing is stopped. Otherwise jump to 
substep 2.
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Notes:

• In implementing the above 
algorithm in C code, we have to 
remember that a vector is starting 
with the zero index.

• Therefore, the initialization from the 
substep 2) becomes: j = i – gap .



A general perspective
• In computer science an algorithm is a self-

contained step-by-step set of operations to be 
performed.

• Algorithms perform calculation, data processing, 
and/or automated reasoning tasks.

• Practically, there is an endless variety of algorithms 
(but it is quite useful to classify them - see related 
books, written by Donald Knuth).
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An algorithm can be easily 
expressed by using a flow chart

• An algorithm is an effective method that can be expressed 
within a finite amount of space and time and in a well-defined 
formal language for calculating a function. 

• Starting from an initial state and initial input (perhaps empty), 
the instructions describe a computation that, when executed, 
proceeds through a finite number of well-defined successive 
states, eventually producing "output" and terminating at a 
final ending state. 

• The transition from one state to the next is not necessarily 
deterministic; some algorithms, known as randomized 
algorithms, incorporate random input. 26



Other classical algorithms 
• Divide and conquer algorithms

– Divide and conquer (D&C) is an algorithm design paradigm based on 
multi-branched recursion. A divide and conquer algorithm works by 
recursively breaking down a problem into two or more sub-problems of 
the same (or related) type, until these become simple enough to be 
solved directly. The solutions to the sub-problems are then combined to 
give a solution to the original problem.

• Greedy algorithm
– A greedy algorithm is an algorithm that follows the problem solving 

heuristic of making the locally optimal choice at each stage with the hope 
of finding a global optimum. In many problems, a greedy strategy does 
not in general produce an optimal solution, but nonetheless a greedy 
heuristic may yield locally optimal solutions that approximate a global 
optimal solution in a reasonable time.

27



Divide and conquer algorithm
• This technique is the basis of efficient algorithms for 

all kinds of problems, such as sorting (e.g. quicksort, 
merge sort, etc.), multiplying large numbers, syntactic 
analysis (e.g., top-down parsers), and computing the 
discrete Fourier transform (DFT).

• The name "divide and conquer" is sometimes applied 
also to algorithms that reduce each problem to only 
one sub-problem, such as the binary search 
algorithm for finding a record in a sorted list (or its 
analog in numerical computing, the bisection 
algorithm for root finding). 28



Greedy algorithm
• A greedy strategy for the traveling salesman 

problem (which is of a high computational 
complexity) is the following heuristic: "At each stage 
visit an unvisited city nearest to the current city". 
This heuristic need not find a best solution, but 
terminates in a reasonable number of steps; finding 
an optimal solution typically requires unreasonably 
many steps. In mathematical optimization, greedy 
algorithms solve combinatorial problems (of NP 
complexity).

29



Notes:
• We can make whatever choice seems best at the moment 

and then solve the subproblems that arise later. 
• The choice made by a greedy algorithm may depend on 

choices made so far but not on future choices or all the 
solutions to the subproblem. 

• It iteratively makes one greedy choice after another, reducing 
each given problem into a smaller one. In other words, a 
greedy algorithm never reconsiders its choices. 

• This is the main difference from dynamic programming, which 
is exhaustive and is guaranteed to find the solution. 

• After every stage, dynamic programming makes decisions 
based on all the decisions made in the previous stage, and 
may reconsider the previous stage's algorithmic path to 
solution. 30



Warning!
• Greedy algorithms mostly (but not always) fail to find the 

globally optimal solution, because they usually do not 
operate exhaustively on all the data. 

• They can make commitments to certain choices too early 
which prevent them from finding the best overall solution 
later. 

• For example, all known greedy coloring algorithms for 
the graph coloring problem and all other NP-complete 
problems do not consistently find optimum solutions. 

• Nevertheless, they are useful because they are quick to 
think up and often give good approximations to the 
optimum.

31
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With a goal of reaching the largest-sum, at each step, the greedy 
algorithm will choose what appears to be the optimal immediate 
choice, so it will choose 12 instead of 3 at the second step, and will 
not reach the best solution, which contains 99.



Perspective
• Greedy algorithms are often used in ad 

hoc mobile networking to efficiently route 
packets with the fewest number of hops 
and the shortest delay possible. 

• They are also used in machine learning, 
business intelligence (BI), and artificial 
intelligence (AI).

33



Backtracking
• Backtracking is a general algorithm for 

finding all solutions of a problem of 
calculation algorithm that is based on 
building incremental candidate solutions, 
each candidate partially abandoned as 
soon as it becomes clear that he has no 
chance to be a valid solution.

• See the last laboratory…
http://www.euroqual.pub.ro/wp-content/uploads/sda_lab_06_backtracking.pdf

34



Backtracking
• Backtracking depends on:

- user-given "black box procedures" that 
define the problem to be solved, 

- the nature of the partial candidates, 
- how they are extended into complete 

candidates. 

It is therefore a metaheuristic rather than a specific 
algorithm – although, unlike many other meta-
heuristics, it is guaranteed to find all solutions to a finite 
problem in a bounded amount of time. 35
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Analysis of algorithms 
efficiency

• The analysis of algorithms is the 
determination of the amount of 
resources, which are necessary 
to execute them.
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Resources mean:

• The memory space required for storing 
the data, which are being processed by 
the algorithm.

• The time required for execution of all 
specified processes of the algorithm.
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The study of an algorithm 
includes several aspects: 

• Designing
• Implementation
• Validation
• Testing:

– Debugging
– Traceability – refers to the ability to link all 

product requirements back to the designing plan 
(relating to code, and test cases). 

• Efficiency evaluation
38
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Testing Problem
• It can be particularly difficult for large 

software, with many lines of codes.

• Usually, the cases used to test can not 
cover all possible situations.

• It requires considerable time and 
significant computation resources. 

39
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“ Program testing can at best show the 
presence of errors but never their absence…

Nothing is as expensive as making mistakes.”

Edsger Wybe Dijkstra
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The efficiency of algorithms
• Ideally, for a given problem, is to find 

several algorithms and then choose the 
best one among them …

• … i.e. to find the most efficient algorithm at 
the current time (using available 
resources).

41



• The algorithmic efficiency is 
very related to the amount of 
resources used by that 
algorithm.

42
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An algorithm can be analyzed 
in two ways:
• Posteriori (empirical) - analyze the 

behavior after the implementation of an 
algorithm, by running on different cases.

• A priori (theoretically) - before 
implementing and implies quantitative 
determination of resources (time, memory, 
etc.)

43
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Notes:
• The big downside of the posteriori 

analysis: practically, an algorithm cannot 
be tested for any possible extreme cases.

• A priori analysis:
– does not depend on computer or computing 

language
– saves time (which could be spent on 

programming, especially when running an 
inefficient algorithm)

– it allows to study the effectiveness for the cases 
of any size 44
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Improving the computing 
speed 

• Changing an old computer (with a new 
one, more powerful) may lead to solving a 
problem 100 times faster (for the same 
inputs)  but this increasing is only a 
linear one

• only an efficient algorithm can dramatically 
improve the solving of a problem with 
huge inputs.

45
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In the following we will be focused 
only on the time parameter

• The major objective of efficiency is 
considered the execution time.

• Theoretically, other necessary resources 
(such as the involved memory) may be  
similarly estimated.

46



47

Definition:

• We say that an algorithm requires a time 
of the order of t if there is a positive 
constant c, and an implementation 
(program code) of the algorithm, capable 
of solving the problem in each case not 
more than ct(n) seconds, where n is the 
size of the case under consideration.

47
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Note: 

The c constant actually depends of 
the CPU's clock frequency.

48
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Asymptotic notation

• We note with:
R+   - the complete set of all real positive numbers 
N  - the complete set of all natural numbers 

Considering f : N  R+ as an arbitrary function, we can define 
the O notation (or Big-O notation):

49
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Notes:

- The Big-O notation is the formal method of 
expressing the upper bound of an algorithm's running 
time. It's a measure of the longest amount of time it 
could possibly take for the algorithm to complete.

- More formally, for non-negative functions, f(n) and 
g(n), if there exists an integer and a constant c > 0 
such that for all integers , f(n) ≤ c∙g(n), then f(n) is Big 
O of g(n). This is denoted as "f(n) = O(g(n))". If 
graphed, g(n) serves as an upper bound to the curve 
you are analyzing, f(n).
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The principle of invariance
Two different implementations of the same 
algorithm  do not differ (in theirs 
efficiencies) by more than a multiplicative 
constant.
Example: 

With two different implementations, requiring t1(n) seconds, and 
t2(n) seconds respectively, to solve a problem of size n, it results 
that:

021
* )()( nnntcntthatsoRc  
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Note:

t  O(t)

Usually we are looking for the simplest function 
f so that:   tO(f)
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It is obvious that:

n  O(n) ,     n2  O(n2) ,     n2  O(n3) ,     n3  O(n2)

We can say that:

)()(: 22* nOfnOfifRNf  

)2(2)(: * nf OnOfifRNf  
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We can define relations for 
partial order:

• f  ≤  g if O(f)  O(g)

• f  < g if O(f)  O(g)
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Properties:

P1:   Transitivity
If f  O(g) and g  O(h) then f  O(h)

P2:  If  f  O(g) then  O(f)  O(g)
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:: * obtainweRNgandf 
a) O(f) = O(g)  f  O(g) and g  O(f)

b) O(f)  O(g)  f  O(g) and g  O(f)

P3:

P4:
*:)),(max()(  RNgandfforgfOgfO

where the sum and the product, also, are punctualy 
considered.
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We can define the equivalence 
relation as:

f  g if O(f) = O(g)

Note: In the notation O(f) we can replace f with 
other equivalent function. 
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Example:

lg(n)  ln(n)  log2(n) or O(lg(n))=O(ln(n))=O(log2n)

This is obvious, since it is always possible to find a 
constant c so that:    lg(n) ≤ cꞏln(n)

Since:

a
xx

b

b
a log

loglog 

it result that:
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)2(...)()()log()()(log)1( 32 nOnOnOnnOnOnOO 

If we denote by O(1) the higher order of the functions bounded by 
a constant, then we can obtain the hierarchy:

This hierarchy corresponds to a performance criterion.

For a given problem, we always want to obtain a corresponding 
algorithm with its order as much as possible to the left side in the 
specified hierarchy.
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Example:

n3 + 3ꞏn2 + n + 8  O(n3 + (3ꞏn2 + n + 8) ) = O(max(n3 , (3ꞏn2 + n + 8))) 
= O(n3)

Note:

max(n3 , (3∙n2 + n + 8))   will be  n3 for a number, which 
is sufficient great  (since the increase of the chart for n3 is 
faster than any second-degree polynomial even if it is 
started from lower values).
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Algorithms analysis techniques
• There isn't a general formula for analyzing 

the efficiency of algorithms.

• This is a matter of judgment, intuition and 
experience.

• The flowchart may be useful in order to 
find the Big-O of an algorithm.
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Selection sort



63

- The time for a single execution of the inner loop can be upper 
bounded by an a constant.

- For a given i, the inner loop needs a time frame of not more than 

b + aꞏ(n - i) units

where b is a constant that denotes the loop initialization.

- A single execution of the external loop needs no more than 

c + b + aꞏ(n - i) units

where c is other constant.

Finally, the total time for the algorithm is no more than:
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Therefore the insertion sorting algorithm requires a 
runtime of O(n2)


