
Data Structures and
Algorithms (DSA)

Course 12
Heap tree and sorting

techniques

Iulian Năstac

2

Special binary trees
(Recapitulation)

P: A binary tree with the height i could have
a maximum number of 2i+1-1 nodes.

Notes:

A level with the depth k could have maximum 2k nodes

3

The full binary tree
(Recapitulation)

A full binary tree is the one that has the maximum
number of vertices (2i+1-1) for a specified height of i.

For example, a full binary tree of height 2 is as follows :

A full binary tree is that one in which every node has two children
(excepting the last level with the leaves).

4

Complete binary tree
(Recapitulation)

A binary tree with n nodes that has a height of i is
called as being a complete binary tree if it is
obtained from a full binary tree with a height of i, in
which there are eliminated the last consecutive nodes,
numbered with n+1, n+2, ... up to 2i+1-1.

Notes:
• A complete binary tree is a binary tree in

which every level, except possibly the last,
is completely filled, and all nodes are as
far left as possible.

5

6

7

Notes:

• A complete binary tree can be
sequentially represented using a
vector (noted T), in which the nodes of
depth k, from left to right, are inserted
in the following positions: T[2k],
T[2k+1], …, T[2k+1-1], excepting the
final level, which may be incomplete.

8

• Warning: This is a generic vector, which it begins with T [1]
(not with T [0], as usual in the C programing).

• We can make the necessary changes when we will write the
code in C.

9

Notes:
• The parent of a

node from T[i],
i>1, can be found
in T[i div 2] .

• The sons of a
node from T[i],
can be found (if
exist) in T[2i]
and T[2i + 1] .

10

The height of a complete binary tree
(Recapitulation)

• We demonstrated in previous course that
the height of a complete binary tree with n
vertices is:

 ni 2log

11

The heap tree
(Recapitulation)

A heap is a specialized tree-based
data structure that satisfies the heap
property:

If A is a parent node of B then
the key of node A is ordered with
respect to the key of node B. The
same ordering is applied across
the entire heap.

The heap is not a classic binary tree!
There is no order between left and right son of a

father inside of a heap…

Example of a heap tree

12

100 75 80 30 50 60 70 28 10 40

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

Heap tree types

• Heaps can be classified further as either a
"max heap" or a "min heap".

• In a max heap, the keys of parent nodes
are always greater than or equal to those
of the children and the highest key is in the
root node.

• In a min heap, the keys of parent nodes
are less than or equal to those of the
children and the lowest key is in the root
node. 13

Notes:

• Usually, in many applications, a max heap
is simply called heap tree

• Any heap tree can be represented by a
vector (one-dimensional array)

14

15

Example:

This heap can be represented by the following vector:
10 7 9 4 7 5 2 2 1 6

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

16

Other example:

This heap can be represented by the following vector:
16 14 10 8 7 9 3 2 4 1

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

17

Notes:
• In a heap tree we can make

modifications at the node level (changing
the value of the current node).

• Thus the value of a node can be
increased or decreased, resulting a
canceling of the specific order inside the
heap tree.

• The order of the heap can be simply
restored through two operations called
sift-down and sift-up.

18

sift-up (percolate) in a heap
sift-up = means to move a node up in
the tree, as long as needed; used to
restore heap condition after insertion.

• Called "sift" because node moves up the
tree until it reaches the correct level, as in
a sieve. Often incorrectly called "shift-up".

• It is also said that the changed value was
filtered (percolated) to his new position.

19

sift-down in a heap
sift-down = moves a node down in the tree,
similar to sift-up; used to restore heap
condition after deletion or replacement.

• If a node value decreases so that it becomes
lower than the elder son, it is enough to
change between them these two values, and
continue the process (downward) until the
heap property is restored.

• It is said that the changed value was sieved
(sift down) to his new position.

20

Note:

• Next, the vast majority of
functions will be written in a
pseudocode version

21

Pseudocode of the sift-down function
void sift_down (T[1…n], i)

{ int k, x, j;

k  i ;

do {

j  k ;

if ((2j ≤ n)  (T[2j] > T[k])) then k  2j;

if ((2j+1 ≤ n)  (T[2j+1] > T[k])) then k  2j+1;

x  T[j];

T[j]  T[k];

T[k]  x

} while (j  k)

}

22

(a) The initial configuration of the heap, with A[2] at node i = 2 violating the
heap property since it is not larger than both children. The heap property is
restored for node 2 in (b) by exchanging A[2] with A[4] (by using other two
variable k, j and a buffer x, where initially k=i and j=k), which destroys the heap
property for node 4. The sift-down function continues with a loop till there are no
further change to the data structure. Here, this is visible by swapping A[4] with
A[9], as shown in (c).

23

24

Pseudocode of the sift-up function
void sift_up (T[1…n], i)

{ int k, j, x;

k  i ;

do {

j  k ;

if ((j > 1)  (T[j div 2] < T[k])) then k  j div 2;

x  T[j];

T[j]  T[k];

T[k]  x

} while (j  k)

}

25

Restore the heap property
We consider T[1..n] as being a heap.
Having i, 1≤i≤n, we can assign to T[i] the value
, and then we can restore the heap property.
void restore_heap (T[1..n], i, )

{local variable x;

x  T[i];

T[i]  ;

if  < x then sift_down(T, i);

else sift_up(T,i);

}

26

The heap is a useful model for:

• Find the maximum item of a max-heap or a
minimum item of a min-heap.

• Adding a new node to the heap.

• Change the value of a node (with
restore_heap).

27

Previous operations can be used to
implement a dynamic list of priorities:
• The node value of a corresponding element

will indicate its priority.
• The event with the highest probability will

always be at the root of the heap.
• The priority of a node can be changed

dynamically.

These are some principles underlying the
database programs.

28

Examples of useful functions:
1) The function for finding the maximum value:

find_maxim (T[1..n])

{ return T[1];

}

2) The function to extract a maximum (and remove it):

extr_max (T[1..n])

{ var loc x;

x  T[1];

T[1]  T[n];

sift_down (T[1..n-1], 1);

return x;

}

29

3) Insertion of a new element in the heap:

insert (T[1..n], )

{

T[n+1]  ;

sift_up (T[1..n+1], n+1);

}

30

Notes: in C language, it is not taken into
consideration the maximum number of
elements of an array used as a
parameter function, so that, for
example, for the position of sift-up, sift-
down, etc., will have to take into
account an additional parameter.

Example: sift_down (T[], n, i)

where n indicates the index of the last
element of the vector (the numbering
should start from 0 in C language!).

31

How can we create a heap from an
unordered vector T[1..n] ?

• A less effective solution is to start from a
heap of one element and add items one by
one.

slow_make_heap(T[1..n])
{

for (i=2; i ≤ n; i++)
sift_up (T[1..i], i);

}

32

33

But there is another linear algorithm that works
better (in terms of order / efficiency):

make_heap(T[1..n])
{

for (i = n div 2; i ≥ 1; i - -)
sift_down (T[], i);

}

34

How to build a heap tree from an arbitrary array

• Starting from the following vector
(which is not a heap):

4 1 3 2 16 9 10 14 8 7
T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

Through a sequence of few steps we can
obtain:

16 14 10 8 7 9 3 2 4 1

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

35

36

The obtained heap tree:

This heap can be represented by the following vector:
16 14 10 8 7 9 3 2 4 1

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

37

Other example (homework):
• Starting from the following vector

(which is not a heap):
1 6 9 2 7 5 2 7 4 10

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

Through a sequence of few steps we can
obtain:

10 7 9 4 7 5 2 2 1 6

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

The result should be like this:

38

This heap can be represented by the following vector:
10 7 9 4 7 5 2 2 1 6

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

39

Remember
• In a min heap, the keys of parent nodes are

less than or equal to those of the children and
the lowest key is in the root node.

Note:
- All procedures, used to handle a heap, are

changed accordingly to this new situation.

40

Classic heap (Max Heap) vs Min Heap

41

Warning!

• The heap data structure is very
attractive, but it does have limitations.

• There are operations that can not be
performed effectively in a heap.

42

The disadvantages of a heap:

• The tree has to be a complete one.

• Finding a peak with a certain value is
inefficient (because there may be several
nodes with the same value placed on
different branches/ or levels in the heap).

43

• An extension of the concept of heap is
possible for the complete trees with more
than two children.

• Such an approach will accelerate the sift-
down procedure.

44

The main application of the heap concept:
A new sorting technique

(heapsort)

• The heapsort algorithm was invented
by J. W. J. Williams in 1964. In the
same year, R. W. Floyd published an
improved version that could sort an
array in-place, continuing his earlier
research into the treesort algorithm.

45

heapsort (T[1..n])

{

make_heap(T);

for(i = n; i  2; i - -)

{

T[1]  T[i];

sift_down (T[1…i-1], 1)

}

}

46

Example
First task is to obtain a heap tree from an unsorted vector

Start from the following vector (which is not a heap):

4 1 3 2 16 9 10 14 8 7
T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

After make_heap we obtain:

16 14 10 8 7 9 3 2 4 1

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

47

The operation of
HEAPSORT:

(a) The heap data
structure just after it has
been built by
make_heap.

(b)-(j) The heap just
after each call of
sift_down(T[1…i-1], 1).
The value of i at that
time is shown. Only
lightly shaded nodes
remain in the heap.

(k) The resulting sorted
array A

48

49

Other example (homework):

50

Other ordering (or sorting)
algorithms:
• Insertion

• Selection

• Merge sort

• Quicksort

• etc.

51

Ordering methods
• Ordering = arranging items of the same kind,

class or nature, in an ordered sequence.

• For this purpose we consider that the data are a
collection of items of a certain type and each
item comprises one or even more values
(variables), which are decisive in the ordering
that is performed. Such a value is called key.

52

For the C programming language, a sorting
algorithm can be achieved by one of the
following methods:

1. Arranging data (which are sorted) so
that their keys will finally correspond
to the desired order.

2. By ordering an array of pointers (to
the data that must be sorted) in
order to form an ordered set.

53

Note:

• In the following we will discuss only
about sorting unidimensional arrays
(vectors) with numerical data.

54

Insertion sorting algorithm
• Insertion sort is a simple sorting algorithm

that builds the final sorted array (or list)
one item at a time.

• The general idea of sorting by insertion is
to consider (at a time) each element of the
array and insert it into the substring
previously ordered.

• The operation involves a growing
sequence, which is moved to the right.

55

56

57

A brief description of the algorithm in pseudocode is as follows:

procedure insert(T[1..n])
{

local variables i, j, x
for i  2 to n do
{

x  T[i]
j  i -1
while (j>0 and x<T[j]) do

{
T[j+1]  T[j]
j  j – 1

}
T[j+1]  x

}
}

Note: In implementing the above algorithm in C code, we have to keep
in mind that a vector is starting with an zero index.

58

The selection sorting algorithm

• Selection sort is a sorting algorithm,
specifically an in-place comparison sort.

• Selection sort is noted for its simplicity,
and it has performance advantages over
more complicated algorithms in certain
situations, particularly where auxiliary
memory is limited.

How it works
• The algorithm divides the input list into two parts: the

sublist of items already sorted, which is built up from left
to right at the front (left) of the list, and the sublist of
items remaining to be sorted that occupy the rest of the
list.

• Initially, the sorted sublist is empty and the unsorted
sublist is the entire input list.

• The algorithm proceeds by finding the smallest (or
largest, depending on sorting order) element in the
unsorted sublist, exchanging it with the leftmost unsorted
element (putting it in sorted order), and moving the
sublist boundaries one element to the right.

59

60

61

62

A brief description of the algorithm in pseudocode is as follows:

procedure select(T[1..n])
{

local variables i, j, min_j, min_x,
for i  1 to n-1 do

{ min_j  i
min_x  T[i]
for j  i+1 to n do

if T[j] < min_x then
{ min_j  j
min_x  T[j]

}
T[min_j]  T[i]
T[i]  min_x

}
}

Note: In implementing the above algorithm in C code, we have to keep in
mind that a vector is starting with an zero index.

63

Bubblesort algorithm
• Bubble sort is a simple sorting algorithm that

repeatedly steps through the list to be sorted,
compares each pair of adjacent items and swaps
them if they are in the wrong order. The pass
through the list is repeated until no swaps are
needed, which indicates that the list is sorted.

• The algorithm, which is a comparison sort, is
named for the way smaller elements "bubble" to
the top of the list.

• Although the algorithm is simple, it is too slow and
impractical for most problems even when
compared to insertion sort.

64

Shellsort algorithm
• Shellsort is an in-place comparison sort. It can

be seen as either a generalization of sorting
by exchange (bubble sort) or sorting by
insertion (insertion sort).

• The method starts by sorting pairs of
elements far apart from each other, then
progressively reducing the gap between
elements to be compared. Starting with far
apart elements can move some out-of-place
elements into position faster than a simple
nearest neighbor exchange.

• Donald Shell published the first version of this
sort in 1959.

• The running time of Shellsort is
heavily dependent on the gap
sequence it uses.

• For many practical variants,
determining their time complexity
remains an open problem.

65

66

Shell sort method can be defined
as in the following :
1) Start with a gap = n/2, where n is the

number of the elements that will be
sorted.

2) Make a crossing of the vector of items
that are sorted.

3) The gap it halves gap = gap/2 .
4) If gap > 0, then jump to step 2, otherwise

the algorithm stops.

67

Note Each crossing through the
elements involves the following
substeps:
1) i = gap.
2) j = i – gap + 1 .
3) If j > 0 and the elements from the positions: j and
j+gap are not ordered, then we will interchange their
values. Otherwise jump to substep 6.
4) j = j – gap.
5) Jump to substep 3.
6) i = i + 1.
7) If i > n, the crossing is stopped. Otherwise jump to
substep 2.

68

Notes:

• In implementing the above
algorithm in C code, we have to
remember that a vector is starting
with the zero index.

• Therefore, the initialization from the
substep 2) becomes: j = i – gap .

Backtracking
• Backtracking is a general algorithm for

finding all solutions of a problem of
calculation algorithm that is based on
building incremental candidate solutions,
each candidate partially abandoned as
soon as it becomes clear that he has no
chance to be a valid solution.

• See the last laboratory…
http://www.euroqual.pub.ro/wp-content/uploads/sda_lab_06_backtracking.pdf

69

Backtracking
• Backtracking depends on:

- user-given "black box procedures" that
define the problem to be solved,

- the nature of the partial candidates,
- how they are extended into complete

candidates.

It is therefore a metaheuristic rather than a specific
algorithm – although, unlike many other meta-
heuristics, it is guaranteed to find all solutions to a finite
problem in a bounded amount of time. 70

71

Analysis of algorithms
efficiency

• The analysis of algorithms is the
determination of the amount of
resources, which are necessary
to execute them.

72

Resources mean:

• The memory space required for storing
the data, which are being processed by
the algorithm.

• The time required for execution of all
specified processes of the algorithm.

