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Special binary trees
(Recapitulation)

P: A binary tree with the height  i could have 
a maximum number of 2i+1-1 nodes.

Notes:

A level with the depth k could have maximum 2k nodes
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The full binary tree
(Recapitulation)

A full binary tree is the one that has the maximum 
number of vertices (2i+1-1) for a specified height of i.

For example, a full binary tree of height 2 is as follows :

A full binary tree is that one in which every node  has two children 
(excepting the last level with the leaves).
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Complete binary tree
(Recapitulation)

A binary tree with n nodes that has a height of i is 
called as being a complete binary tree if it is 
obtained from a full binary tree with a height of i, in 
which there are eliminated the last consecutive nodes, 
numbered with n+1, n+2, ... up to 2i+1-1.



Notes:
• A complete binary tree is a binary tree in 

which every level, except possibly the last, 
is completely filled, and all nodes are as 
far left as possible. 
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Notes:

• A complete binary tree can be 
sequentially represented using a 
vector (noted T), in which the nodes of 
depth k, from left to right, are inserted 
in the following positions: T[2k],
T[2k+1], …, T[2k+1-1], excepting the 
final level, which may be incomplete.
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• Warning: This is a generic vector, which it begins with T [1]
(not with T [0], as usual in the C programing). 

• We can make the necessary changes when we will write the 
code in C. 
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Notes:
• The parent of a 

node from T[i], 
i>1, can be found 
in T[i div 2] .

• The sons of a 
node from T[i], 
can be found (if 
exist) in T[2i]
and T[2i + 1] .
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The height of a complete binary tree
(Recapitulation)

• We demonstrated in previous course that 
the height of a complete binary tree with n 
vertices is: 

 ni 2log
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The heap tree
(Recapitulation)

A heap is a specialized tree-based 
data structure that satisfies the heap 
property: 

If A is a parent node of B then 
the key of node A is ordered with 
respect to the key of node B. The 
same ordering is applied across 
the entire heap.

The heap is not a classic binary tree!
There is no order between left and right son of a 

father inside of a heap…



Example of a heap tree 
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100 75 80 30 50 60 70 28 10 40

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]



Heap tree types

• Heaps can be classified further as either a 
"max heap" or a "min heap". 

• In a max heap, the keys of parent nodes 
are always greater than or equal to those 
of the children and the highest key is in the 
root node. 

• In a min heap, the keys of parent nodes 
are less than or equal to those of the 
children and the lowest key is in the root 
node. 13



Notes: 

• Usually, in many applications, a max heap 
is simply called heap tree

• Any heap tree can be represented by a 
vector (one-dimensional array)
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Example:

This heap can be represented by the following vector:
10 7 9 4 7 5 2 2 1 6

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]
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Other example:

This heap can be represented by the following vector:
16 14 10 8 7 9 3 2 4 1

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]
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Notes:
• In a heap tree we can make 

modifications at the node level (changing 
the value of the current node).

• Thus the value of a node can be 
increased or decreased, resulting a 
canceling of the specific order inside the 
heap tree.

• The order of the heap can be simply 
restored through two operations called 
sift-down and sift-up. 
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sift-up (percolate) in a heap
sift-up = means to move a node up in 
the tree, as long as needed; used to 
restore heap condition after insertion. 

• Called "sift" because node moves up the 
tree until it reaches the correct level, as in 
a sieve. Often incorrectly called "shift-up".

• It is also said that the changed value was 
filtered (percolated) to his new position.
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sift-down in a heap
sift-down = moves a node down in the tree, 
similar to sift-up; used to restore heap 
condition after deletion or replacement.

• If a node value decreases so that it becomes 
lower than the elder son, it is enough to 
change between them these two values, and 
continue the process (downward) until the 
heap property is restored.

• It is said that the changed value was sieved 
(sift down) to his new position.
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Note:

• Next, the vast majority of 
functions will be written in a 
pseudocode version
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Pseudocode of the sift-down function
void sift_down (T[1…n], i)

{ int k, x, j;

k  i ;

do {

j  k ;

if ((2j ≤ n)  (T[2j] > T[k]))  then k  2j;

if ((2j+1 ≤ n)  (T[2j+1] > T[k]))  then k  2j+1;

x  T[j];

T[j]  T[k];

T[k]  x

} while (j  k)

}
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(a) The initial configuration of the heap, with A[2] at node i = 2 violating the 
heap property since it is not larger than both children. The heap property is 
restored for node 2 in (b) by exchanging A[2] with A[4] (by using other two 
variable k, j and a buffer x, where initially k=i and j=k), which destroys the heap 
property for node 4. The sift-down function continues with a loop till there are no 
further change to the data structure. Here, this is visible by swapping A[4] with 
A[9], as shown in (c).
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Pseudocode of the sift-up function
void sift_up (T[1…n], i)

{ int k, j, x;

k  i ;

do {

j  k ;

if ((j > 1)  (T[ j div 2] < T[k]))  then k  j div 2;

x  T[ j];

T[ j]  T[k];

T[k]  x

} while (j  k)

}
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Restore the heap property
We consider T[1..n] as being a heap. 
Having i, 1≤i≤n, we can assign to T[i] the value
, and then we can restore the heap property.
void restore_heap (T[1..n], i, )

{local variable x;

x  T[i];

T[i]  ;

if   < x   then sift_down(T, i);

else sift_up(T,i);

}
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The heap is a useful model for:

• Find the maximum item of a max-heap or a 
minimum item of a min-heap.

• Adding a new node to the heap.

• Change the value of a node (with
restore_heap).
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Previous operations can be used to 
implement a dynamic list of priorities:
• The node value of a corresponding element 

will indicate its priority.
• The event with the highest probability will 

always be at the root of the heap.
• The priority of a node can be changed 

dynamically.

These are some principles underlying the 
database programs.
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Examples of useful functions:
1) The function for finding the maximum value:

find_maxim (T[1..n])

{  return T[1];

}

2) The function to extract a maximum (and remove it):

extr_max (T[1..n])

{ var loc x;

x  T[1];

T[1]  T[n];

sift_down (T[1..n-1], 1);

return x;

}
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3) Insertion of a new element in the heap:

insert (T[1..n], )

{

T[n+1]  ;

sift_up (T[1..n+1], n+1);

}
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Notes: in C language, it is not taken into 
consideration the maximum number of 
elements of an array used as a 
parameter function, so that, for 
example, for the position of sift-up, sift-
down, etc., will have to take into 
account an additional parameter.

Example: sift_down (T[ ], n, i)

where n indicates the index of the last 
element of the vector (the numbering  
should start  from 0 in C language!).



31

How can we create a heap from an 
unordered vector T[1..n] ?

• A less effective solution is to start from a 
heap of one element and add items one by 
one.

slow_make_heap(T[1..n])
{

for (i=2; i ≤ n; i++)
sift_up (T[1..i], i);

}
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But there is another linear algorithm that works 
better (in terms of order / efficiency):

make_heap(T[1..n])
{

for (i = n div 2; i ≥ 1; i - -)
sift_down (T[ ], i);

}
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How to build a heap tree from an arbitrary array

• Starting from the following vector 
(which is not a heap):

4 1 3 2 16 9 10 14 8 7
T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

Through a sequence of few steps we can 
obtain:

16 14 10 8 7 9 3 2 4 1

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]
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The obtained heap tree:

This heap can be represented by the following vector:
16 14 10 8 7 9 3 2 4 1

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]
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Other example (homework):
• Starting from the following vector 

(which is not a heap):
1 6 9 2 7 5 2 7 4 10

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

Through a sequence of few steps we can 
obtain:

10 7 9 4 7 5 2 2 1 6

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]



The result should be like this:
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This heap can be represented by the following vector:
10 7 9 4 7 5 2 2 1 6

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]
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Remember
• In a min heap, the keys of parent nodes are 

less than or equal to those of the children and 
the lowest key is in the root node.

Note:
- All procedures, used to handle a heap, are 

changed accordingly to this new situation.
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Classic heap (Max Heap) vs Min Heap
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Warning!

• The heap data structure is very 
attractive, but it does have limitations.

• There are operations that can not be 
performed effectively in a heap.
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The disadvantages of a heap:

• The tree has to be a complete one.

• Finding a peak with a certain value is 
inefficient (because there may be several 
nodes with the same value placed on 
different branches/ or levels in the heap).
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• An extension of the concept of heap is 
possible for the complete trees with more 
than two children.

• Such an approach will accelerate the sift-
down procedure.
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The main application of the heap concept:
A new sorting technique

(heapsort)

• The heapsort algorithm was invented 
by J. W. J. Williams in 1964. In the 
same year, R. W. Floyd published an 
improved version that could sort an 
array in-place, continuing his earlier 
research into the treesort algorithm.
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heapsort (T[1..n])

{

make_heap(T);

for( i = n; i  2; i - -)

{

T[1]  T[i];

sift_down (T[1…i-1], 1)

}

}
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Example
First task is to obtain a heap tree from an unsorted vector

Start from the following vector (which is not a heap):

4 1 3 2 16 9 10 14 8 7
T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

After make_heap we obtain:

16 14 10 8 7 9 3 2 4 1

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]
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The operation of 
HEAPSORT: 

(a) The heap data 
structure just after it has 
been built by 
make_heap. 

(b)-(j) The heap just 
after each call of 
sift_down(T[1…i-1], 1). 
The value of i at that 
time is shown. Only 
lightly shaded nodes 
remain in the heap. 

(k) The resulting sorted 
array A
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Other example (homework):



50

Other ordering (or sorting) 
algorithms:
• Insertion

• Selection

• Merge sort

• Quicksort

• etc.
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Ordering methods
• Ordering = arranging items of the same kind, 

class or nature, in an ordered sequence. 

• For this purpose we consider that the data are a 
collection of items of a certain type and each 
item comprises one or even more values 
(variables), which are decisive in the ordering 
that is performed. Such a value is called key.
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For the C programming language, a sorting 
algorithm can be achieved by one of the 
following methods:

1. Arranging data (which are sorted) so 
that their keys will finally correspond 
to the desired order.

2. By ordering an array of pointers (to 
the data that must be sorted) in 
order to form an ordered set.
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Note:

• In the following we will discuss only 
about sorting unidimensional arrays 
(vectors) with numerical data.
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Insertion sorting algorithm
• Insertion sort is a simple sorting algorithm 

that builds the final sorted array (or list) 
one item at a time.

• The general idea of sorting by insertion is 
to consider (at a time) each element of the 
array and insert it into the substring  
previously ordered. 

• The operation involves a growing 
sequence, which is moved to the right.
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A brief description of the algorithm in pseudocode is as follows: 

procedure insert(T[1..n])
{

local variables  i, j, x
for i  2 to n do
{

x  T[i]
j  i -1
while (j>0 and x<T[ j]) do

{
T[ j+1]  T[ j]  
j  j – 1

}
T[ j+1]  x

}
}

Note: In implementing the above algorithm in C code, we have to keep 
in mind that a vector is starting with an zero index.
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The selection sorting algorithm

• Selection sort is a sorting algorithm, 
specifically an in-place comparison sort. 

• Selection sort is noted for its simplicity, 
and it has performance advantages over 
more complicated algorithms in certain 
situations, particularly where auxiliary 
memory is limited.



How it works
• The algorithm divides the input list into two parts: the 

sublist of items already sorted, which is built up from left 
to right at the front (left) of the list, and the sublist of 
items remaining to be sorted that occupy the rest of the 
list. 

• Initially, the sorted sublist is empty and the unsorted 
sublist is the entire input list. 

• The algorithm proceeds by finding the smallest (or 
largest, depending on sorting order) element in the 
unsorted sublist, exchanging it with the leftmost unsorted 
element (putting it in sorted order), and moving the 
sublist boundaries one element to the right.
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A brief description of the algorithm in pseudocode is as follows: 

procedure select(T[1..n])
{

local variables  i, j, min_j, min_x,
for i  1 to n-1 do

{ min_j  i
min_x  T[i]
for j  i+1 to n do

if T[j] < min_x then
{ min_j  j
min_x  T[j]

}
T[min_j]  T[i]
T[i]  min_x

}
}

Note: In implementing the above algorithm in C code, we have to keep in 
mind that a vector is starting with an zero index.
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Bubblesort algorithm 
• Bubble sort is a simple sorting algorithm that 

repeatedly steps through the list to be sorted, 
compares each pair of adjacent items and swaps 
them if they are in the wrong order. The pass 
through the list is repeated until no swaps are 
needed, which indicates that the list is sorted.

• The algorithm, which is a comparison sort, is 
named for the way smaller elements "bubble" to 
the top of the list. 

• Although the algorithm is simple, it is too slow and 
impractical for most problems even when 
compared to insertion sort.
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Shellsort algorithm
• Shellsort is an in-place comparison sort. It can 

be seen as either a generalization of sorting 
by exchange (bubble sort) or sorting by 
insertion (insertion sort).

• The method starts by sorting pairs of 
elements far apart from each other, then 
progressively reducing the gap between 
elements to be compared. Starting with far 
apart elements can move some out-of-place 
elements into position faster than a simple 
nearest neighbor exchange. 

• Donald Shell published the first version of this 
sort in 1959.



• The running time of Shellsort is 
heavily dependent on the gap
sequence it uses. 

• For many practical variants, 
determining their time complexity 
remains an open problem.
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Shell sort method can be defined 
as in the following :
1) Start with a gap = n/2, where n is the 

number of the elements that will be 
sorted.

2) Make a crossing of the vector of items 
that are sorted. 

3) The gap it halves gap = gap/2 .
4) If gap > 0, then jump to step 2, otherwise 

the algorithm stops. 
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Note Each crossing through the 
elements involves the following 
substeps:
1) i = gap.
2) j = i – gap + 1 .
3) If j > 0 and the elements from the positions: j and
j+gap are not ordered, then we will interchange their 
values. Otherwise jump to substep 6.
4) j = j – gap.
5) Jump to substep 3.
6) i = i + 1.
7) If i > n, the crossing is stopped. Otherwise jump to 
substep 2.
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Notes:

• In implementing the above 
algorithm in C code, we have to 
remember that a vector is starting 
with the zero index.

• Therefore, the initialization from the 
substep 2) becomes: j = i – gap .



Backtracking
• Backtracking is a general algorithm for 

finding all solutions of a problem of 
calculation algorithm that is based on 
building incremental candidate solutions, 
each candidate partially abandoned as 
soon as it becomes clear that he has no 
chance to be a valid solution.

• See the last laboratory…
http://www.euroqual.pub.ro/wp-content/uploads/sda_lab_06_backtracking.pdf
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Backtracking
• Backtracking depends on:

- user-given "black box procedures" that 
define the problem to be solved, 

- the nature of the partial candidates, 
- how they are extended into complete 

candidates. 

It is therefore a metaheuristic rather than a specific 
algorithm – although, unlike many other meta-
heuristics, it is guaranteed to find all solutions to a finite 
problem in a bounded amount of time. 70
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Analysis of algorithms 
efficiency

• The analysis of algorithms is the 
determination of the amount of 
resources, which are necessary 
to execute them.
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Resources mean:

• The memory space required for storing 
the data, which are being processed by 
the algorithm.

• The time required for execution of all 
specified processes of the algorithm.


