
Data Structures and
Algorithms (DSA)

Course 11
Trees

Iulian Năstac

2

4. Deleting a binary tree
(Recapitulation)

• to delete a binary tree is required to
traverse it and delete each node of that
tree (in a specific way).

• it is used the elibnod function.

• the tree will be traversed in postorder

3

Deleting a binary tree in postorder
(Recapitulation)

void delete_tree(NOD *p)
{
if(p != 0)

{
delete_tree (p -> left);
delete_tree (p -> right);
elibnod(p);

}
}

4

Notes:

• The delete_tree function does not assign
zero to the global variable (to proot).

• This assignment will be required
immediately after the call of the
delete_tree function.

proot=0;

5

• A degenerate binary tree – is the
one where all of the nodes
(except the last leaf) contain only
one sub node.

6

5. Deleting a node specified by a key
• The key is a part of every node and it is unique for each

of them:
typedef struct nod

{
< statements ; >
type key;
struct nod *left;
struct nod *right;

} NOD;
where the key type can be char, int, float or double.

• Especially leaf nodes can be deleted!

• Deleting a node that is not a leaf involves more
complicated operations to restore the binary tree
structure.

7

void search_delete(NOD *p, int c) /* the key is an integer here */

{

if (p != 0)

{

if ((p -> left = = p -> right) && (p -> left = = 0) && (p -> key = = c))

{

elibnod (p);

return;

}

search_delete(p -> left, c);

search_delete(p -> right, c);

}

}

Note: This operation, which includes search and delete, is processed in pre-
order.

8

Notes:

• At a closer look, from the above
function it lacks something: when a
leaf node identified was deleted from
his parent, then the father should have
the zero value for the recursive pointer
that correspond to the deleted direction
(node)!

• How can you solve this problem?

Supplementary note
• In some applications are required specific flattening

trees (having a low height) but with large numbers of
nodes.

• In such cases it may replace a binary tree with another
tree that allows a greater number of direct offsprings
(descendants).

• The procedure is relatively simple, and instead of two
recursive pointers (to the left subtree and to the right
one also), we can use a vector of recursive pointers
(having a certain length), which allows (for the new
type of structure) to define an arbitrary number of
direct descendants. 9

10

• A degenerate binary tree – is
the one where all of the nodes
(except the last leaf) contain only
one sub node.

11

Depth (or Height) of a Binary Tree
(Recapitulation)

• Usually, we can denote the depth of a
binary tree by using h (or i)

12

Depth and height
• The depth of a node is the number of edges

from the node to the tree's root node. A root
node will have a depth of 0.

• The height of a node is the number of edges
on the longest path from the node to a leaf.
The lowest leaf node will have a height of 0.

• For a binary tree, the height and depth
(globally) measure the same thing. 13

14

Special binary trees
(Recapitulation)

P: A binary tree with the height i could have
a maximum number of 2i+1-1 nodes.

Notes:

A level with the depth k could have maximum 2k nodes

15

16

A proof by induction:
• It easily observed that previous declaration is

valid for i = 0, 1, 2 ...
• Therefore, we must prove the validity of the

declaration for the depth of i will implies a
validity for i + 1

We rely on the fact that any level of depth k
has a maximum of 2k nodes.

It is easy to notice that for the height of i+1 we get:
No_of_nodes = 2i+1 - 1 + 2i+1 = 2i+1(1 + 1) - 1 =
2i+12 - 1 = 2i+2 - 1 nodes

17

The full binary tree
A full binary tree is the one that has the maximum
number of vertices (2i+1-1) for a specified height of i.

For example, a full binary tree of height 2 is as follows :

A full binary tree is that one in which every node has two children
(excepting the last level with the leaves).

18

Notes:
• The full binary tree nodes are numbered from

the left to right according with their depth.

19

20

Complete binary tree
(Recapitulation)

A binary tree with n nodes that has a height of i is
called as being a complete binary tree if it is
obtained from a full binary tree with a height of i, in
which there are eliminated the last consecutive nodes,
numbered with n+1, n+2, ... up to 2i+1-1.

Notes:
• A complete binary tree is a binary tree in

which every level, except possibly the last,
is completely filled, and all nodes are as
far left as possible.

21

22

23

Notes:

• A complete binary tree can be
sequentially represented using a
vector (noted T), in which the nodes of
depth k, from left to right, are inserted
in the following positions: T[2k],
T[2k+1], …, T[2k+1-1], excepting the
final level, which may be incomplete.

24

• Warning: This is a generic vector, which it begins with T [1]
(not with T [0], as usual in the C programing).

• We can make the necessary changes when we will write the
code in C.

25

Notes:
• The parent of a

node from T[i],
i>1, can be found
in T[i div 2] .

• The sons of a
node from T[i],
can be found (if
exist) in T[2i]
and T[2i + 1] .

26

27

We can define:

  },|max{ Znxnnx 

  },|min{ Znxnnx 

28

Useful properties:

1.

2.

3.

4.

    11  xxxxx

nnn










22




















ab
nb

a
n

and

and




















ab
nb

a
n a, b, n  Z;

a, b  0

 n  Z;

 x  R;





 







m
mn

m
n 1





 







m
mn

m
n 1

 n, m  N*;

29

The height of a complete binary tree
(Recapitulation)

• We have to demonstrate that the height of
a complete binary tree with n vertices is:

 ni 2log

30

Demonstration:
• Considering:

– n – number of nodes;
– i – height of the tree.

• We already know that:
– nmax = 2i+1-1 (when the binary tree is full)
– nmin = 2i (when on the last level we have only one node)

• It results that:

min2log ni   min2log ni  (1)

31

Since the logarithmic function is increasing
then:

      12log)12(loglog 1
2

1
2max2   in ii

(2)

Therefore:

  1log max2  in

From (1) and (2) it result that:

    1loglog max2min2  inni

  ni 2log

32

The heap tree
(Recapitulation)

A heap is a specialized tree-based
data structure that satisfies the heap
property:

If A is a parent node of B then
the key of node A is ordered with
respect to the key of node B. The
same ordering is applied across
the entire heap.

The heap is not a classic binary tree!
There is no order between left and right son of a

father inside of a heap…

Example of a heap tree

33

Heap tree types

• Heaps can be classified further as either a
"max heap" or a "min heap".

• In a max heap, the keys of parent nodes
are always greater than or equal to those
of the children and the highest key is in the
root node.

• In a min heap, the keys of parent nodes
are less than or equal to those of the
children and the lowest key is in the root
node. 34

Notes:

• Usually, in many applications, a max heap
is simply called heap tree

• Any heap tree can be represented by a
vector (one-dimensional array)

35

36

Example:

This heap can be represented by the following vector:
10 7 9 4 7 5 2 2 1 6

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

37

Notes:
• In a heap tree we can make

modifications at the node level (changing
the value of the current node).

• Thus the value of a node can be
increased or decreased, resulting a
canceling of the specific order inside the
heap tree.

• The order of the heap can be simply
restored through two operations called
sift-down and sift-up.

38

sift-up (percolate) in a heap
sift-up = means to move a node up in
the tree, as long as needed; used to
restore heap condition after insertion.

• Called "sift" because node moves up the
tree until it reaches the correct level, as in
a sieve. Often incorrectly called "shift-up".

• It is also said that the changed value was
filtered (percolated) to his new position.

39

sift-down in a heap
sift-down = moves a node down in the tree,
similar to sift-up; used to restore heap
condition after deletion or replacement.

• If a node value decreases so that it becomes
lower than the elder son, it is enough to
change between them these two values, and
continue the process (downward) until the
heap property is restored.

• It is said that the changed value was sieved
(sift down) to his new position.

40

Note:

• Next, the vast majority of
functions will be written in a
pseudocode version

41

Pseudocode of the sift-down function
void sift_down (T[1…n], i)

{ int k, x, j;

k  i ;

do {

j  k ;

if ((2j ≤ n)  (T[2j] > T[k])) then k  2j;

if ((2j+1 ≤ n)  (T[2j+1] > T[k])) then k  2j+1;

x  T[j];

T[j]  T[k];

T[k]  x

} while (j  k)

}

42

Pseudocode of the sift-up function
void sift_up (T[1…n], i)

{ int k, j, x;

k  i ;

do {

j  k ;

if ((j > 1)  (T[j div 2] < T[k])) then k  j div 2;

x  T[j];

T[j]  T[k];

T[k]  x

} while (j  k)

}

43

Restore the heap property
We consider T[1..n] as being a heap.
Having i, 1≤i≤n, we can assign to T[i] the value
, and then we can restore the heap property.
void restore_heap (T[1..n], i, )

{local variable x;

x  T[i];

T[i]  ;

if  < x then sift_down(T, i);

else sift_up(T,i);

}

44

The heap is a useful model for:

• Find the maximum item of a max-heap or a
minimum item of a min-heap.

• Adding a new node to the heap.

• Change the value of a node (with
restore_heap).

45

Previous operations can be used to
implement a dynamic list of priorities:
• The node value of a corresponding element

will indicate its priority.
• The event with the highest probability will

always be at the root of the heap.
• The priority of a node can be changed

dynamically.

These are some principles underlying the
database programs.

46

Examples of useful functions:
1) The function for finding the maximum value:

find_maxim (T[1..n])

{ return T[1];

}

2) The function to extract a maximum (and remove it):

extr_max (T[1..n])

{ var loc x;

x  T[1];

T[1]  T[n];

sift_down (T[1..n-1], 1);

return x;

}

47

3) Insertion of a new element in the heap:

insert (T[1..n], )

{

T[n+1]  ;

sift_up (T[1..n+1], n+1);

}

48

Notes: in C language, it is not taken into
consideration the maximum number of
elements of an array used as a
parameter function, so that, for
example, for the position of sift-up, sift-
down, etc., will have to take into
account an additional parameter.

Example: sift_down (T[], n, i)

where n indicates the index of the last
element of the vector (the numbering
should start from 0 in C language!).

49

How can we create a heap from an
unordered vector T[1..n] ?

• A less effective solution is to start from a
heap of one element and add items one by
one.

slow_make_heap(T[1..n])
{

for (i=2; i ≤ n; i++)
sift_up (T[1..i], i);

}

50

But there is another linear algorithm that works
better (in terms of order / efficiency):

make_heap(T[1..n])
{

for (i = n div 2; i ≥ 1; i - -)
sift_down (T[], i);

}

51

Example:
• Starting from the following vector

(which is not a heap):
1 6 9 2 7 5 2 7 4 10

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

Through a sequence of few steps we can
obtain:

10 7 9 4 7 5 2 2 1 6

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

52

Remember
• In a min heap, the keys of parent nodes are

less than or equal to those of the children and
the lowest key is in the root node.

Note:
- All procedures, used to handle a heap, are

changed accordingly to this new situation.

53

Warning!

• The heap data structure is very
attractive, but it does have limitations.

• There are operations that can not be
performed effectively in a heap.

54

The disadvantages of a heap:

• The tree has to be a complete one.

• Finding a peak with a certain value is
inefficient (because there may be several
nodes with the same value placed on
different branches/ or levels in the heap).

55

• An extension of the concept of heap is
possible for the complete trees with more
than two children.

• Such an approach will accelerate the sift-
down procedure.

56

The main application of the heap concept:
A new sorting technique

(heapsort)

• The heapsort algorithm was invented
by J. W. J. Williams in 1964. In the
same year, R. W. Floyd published an
improved version that could sort an
array in-place, continuing his earlier
research into the treesort algorithm.

57

heapsort (T[1..n])

{

make_heap(T);

for(i = n; i  2; i - -)

{

T[1]  T[i];

sift_down (T[1…i-1], 1)

}

}

58

Example:

59

Other ordering (or sorting)
algorithms:
• Insertion

• Selection

• Merge sort

• Quicksort

• etc.

60

Ordering methods
• Ordering = arranging items of the same kind,

class or nature, in an ordered sequence.

• For this purpose we consider that the data are a
collection of items of a certain type and each
item comprises one or even more values
(variables), which are decisive in the ordering
that is performed. Such a value is called key.

61

For the C programming language, a sorting
algorithm can be achieved by one of the
following methods:

1. Arranging data (which are sorted) so
that their keys will finally correspond
to the desired order.

2. By ordering an array of pointers (to
the data that must be sorted) in
order to form an ordered set.

62

Note:

• In the following we will discuss only
about sorting unidimensional arrays
(vectors) with numerical data.

