
Data Structures and
Algorithms (DSA)

Course 10
Trees

Iulian Năstac

TREES
(Recapitulation)

Tree structure
• A tree structure or tree diagram is a way of

representing the hierarchical nature of a
structure in a graphical form.

• It is named a "tree structure" because the
classic representation resembles a tree, even
though the chart is generally upside down
compared to an actual tree, with the "root" at
the top and the "leaves" at the bottom. 2

3

• Definition 1:
A tree is a directed graph, which

has an acyclic structure and it is
connected (from the root to every
terminal node - or leaves).

• Definition 2:
A tree is somehow similar with a

list, being a collection of recursive
data structures that has a dynamic
nature.

4

• Definition 3:
By tree we understand a finite and non-empty

group of elements called nodes:

TREE = {A1, A2, A3, ..., An}, where n> 0,

• which has the following properties:
- there is only one node, which is called the root of
the tree.
- the rest of the nodes can be grouped in subsets of
the initial tree, which also form trees. Those trees are
called subtrees of the root.

5

The nodes in a tree
(Recapitulation)

• Each node in a tree has zero or more child nodes, which are
below it in the tree (trees are usually drawn growing
downwards).

• A node that has a child is called the child's parent node (or
ancestor node, or superior). A node has at most one parent.

• An internal node (also known as an inner node) is any node of
a tree that has child nodes. Similarly, a terminal node (also
known as a leaf node) is any node that does not have child
nodes.

• The topmost node in a tree is called the root node.

6

Ordering
(Recapitulation)

• An ordered tree is a rooted
tree for which an ordering is
specified for the children of
each vertex (node).

7

Binary tree
(Recapitulation)

• A binary tree is a tree data
structure in which each node has
at most two children, which are
referred to as the left child and
the right child.

• There are maximum two disjoint
groups for every parental node
(each one being a binary tree).

8

Transformation
(Recapitulation)

• A binary tree it cannot be defined as a
particular case of an ordered tree. Usually,
a classic tree is never empty, while a
binary tree can be empty, sometimes.

• Any ordered tree can be always
represented through a binary tree.

9

Conversion of an classic ordered
tree in a binary tree

(Recapitulation)
1. Links between them all brothers

descendants of the same parent node
and suppress their links with the parent,
except the first son.

2. The former prime son node son becomes
the left son of the parent, and the other
former brothers become sequentially, the
roots of right subtrees. Each of the
brothers becomes downward the right
son of its former big brother.

10

Using structures for building a
binary tree

The node of a binary tree can be represented as another
structural data type, called NOD, which is defined as follows:

typedef struct node
{

<statements>
struct node * left;
struct node * right;

} NOD;

where:
• left - is the pointer to the left son of the current node;
• right - is the pointer to the right son of the same node.

11

In applications with binary trees we
can define several operations such as:

1. Inserting a leaf node in a binary tree;

2. Accessing a node from a tree;

3. Traversing binary tree;

4. Delete a tree.

12

• The operations of insertion and
access to a node are based on a
criteria that defines the place in the
tree where the node in question can
be inserted or found (according with
the current operation which is
involved).

• This criterion is dependent on the
specific problem where the binary
tree concept is applied.

Recapitulation

13

The criterion function
This function has two parameters, which are pointers of NOD
type. Considering p1 as the first parameter of the criterion
function and p2 the second one, then the criterion function will
return:

-1 - if p2 indicates to a data of NOD type which can be
inserted in the left subtree of the node pointed by p1;

1 - if p2 indicates to a data of NOD type which can be
inserted in the right subtree of the node pointed by p1;

0 - if p2 is equivalent with p1.

14

Example:

Let us consider the following set of numbers:

20, 30, 5, 20, 4, 30, 7, 40, 25, 28, ...
We have to build a tree, in which its nodes will contain the
previous numbers along with their frequencies.

Basically all nodes from this tree will have two useful fields :
- the number;

- the frequency.

15

A way to solve the problem:
a. p1 - is a pointer to a node from the tree to which the inserting
is to be linked (p1 indicates initially to the root of the tree)

b. p2 – is a pointer to the current node (the node that will be
inserted)

c. if p2->val < p1->val, then it tries to insert the current node into
the left subtree of the node indicated by p1

d. if p2->val > p1->val, then it tries to insert the current node
into the right subtree of the node indicated by p1

e. if p2->val = p1->val, then the current node will not be inserted
in the tree, because it already exists a corresponding node for
the current value.

16

The current node is no longer inserted in the tree in
the e case (when the criterion function returns
zero). In this case, the nodes pointed by p1 and p2
we consider to be equivalent.

typedef struct nod
{

int nr;
int frequency;
struct nod * left;
struct nod * right;

} NOD;

17

In the case of the previous example, the
criterion function is:

int criterion(NOD *p1, NOD *p2)

{

if(p2->nr < p1->nr) return(-1);

if(p2->nr > p1->nr) return(1);

return(0);

}

18

Function for treating the equivalence

• Usually, when we have two equivalent
nodes, p1 is incremented (or processed in a
specific way) and p2 is eliminated.

• To achieve such processing is necessary to
call a function that takes as parameters the
pointers p1 and p2, and returns a NOD type
pointer (usually returns the value of p1 after
deleting the p2).

• We call this function: equivalence. It is
dependent on the specific issue to be solved
by the program.

19

Example:

NOD *equivalence(NOD *q, NOD *p)

{

q -> frequency ++;

elibnod(p);

return(q);

}

20

Other useful functions
(Recapitulation)

• In addition to the functions listed previously, we
also use other specific functions for operations
on binary trees.

• Typical examples of functions : elibnod and
incnod

• Some functions use a global variable that is a
pointer to the root of the tree.

21

An example of function that is used in laboratory:

void elibnod(NOD *p)
/* Release the heap memory areas allocated by a
pointer type node p */
{
free(p -> word);
free(p);
}

22

The entry in the tree
Recapitulation

• We denote proot a global variable to the
root of the binary tree.

• It is defined as:

NOD *proot;

23

Inserting a leaf node in a binary tree
Recapitulation

The function insnod inserts a node in the
tree, according to the following steps:
1. It is allocated a memory area for the node to be
inserted in the tree. Consider p being the pointer for
this memory.

2. By calling the incnod function, we have to fill the
node with data. If incnod returns 1, then jump to
step 3. Otherwise the function returns the value
zero (after deleting p).

24

3. Assignments are made:
p->left = p->right = 0

since the new node is a leaf one.

4. q = proot

5. Find the position in the tree where the insertion will
be made (find the possible parent for the node which
will be inserted):

i = criterion(q, p)

6. If i<0, then jump to step 7; otherwise jump to step 8.

25

7. Try to insert the current node to the left subtree of the
root q.
- If q -> left is zero, then the current node becomes the
left leaf of q (q->left = p). Afterwards the function
returns the value of p.
- Otherwise q = q->right , and jump to step 5.

8. If i>0, then jump to step 9; otherwise jump to step 10.

26

9. Try to insert the current node to the right subtree of
the root q.
- If q -> right is zero, then the current node becomes
the right leaf of q (q->right = p). Afterwards the function
returns the value of p.
- Otherwise q = q->right , and jump to step 5.

10. The current node cannot be inserted into the binary
tree. Call the equivalence function.

27

2. The access to a node of a tree

• Access to a node implies a criterion for
locating the relevant node in the tree.

• It will be used the criterion function.

• The function which performs the search will
identify an equivalent node in the tree, with
the one pointed by p (used as input
parameter in the searching function).

28

The searching function (denoted search)
will return:

- a pointer to the equivalent node in the
tree;

- 0, if there is no such equivalent node.

29

NOD *search(NOD *p)
{

extern NOD * proot;
NOD *q;
int i;
if (prad = = 0) return 0; /*the tree is empty*/
for (q = proot; q;)

{
if ((i = criterion(q, p)) = = 0) return q;
else if (i < 0) q = q -> left;

else q = q -> right;
}

return 0;
}

30

3. Tree traversal
• Tree traversal is a form of graph traversal

and refers to the process of visiting
(examining or updating) each node in a
tree data structure, exactly once, in a
systematic way.

• Such traversals are classified by the order
in which the nodes are visited.

• The following algorithms are described for
a binary tree, but they may be generalized
to other trees as well.

Traversing the nodes of a binary
tree can be done in several ways:

• Pre-order

• In-order (symmetric)

• Post-order

31

Note: In the following, displaying may be replaced by processing
(which is a more general task).

32

Pre-order

• Display the data part of root element (or
current element)

• Traverse the left subtree by recursively
calling the pre-order function.

• Traverse the right subtree by recursively
calling the pre-order function.

33

In-order (symmetric)
• Traverse the left subtree by recursively

calling the in-order function.

• Display the data part of root element (or
current element).

• Traverse the right subtree by recursively
calling the in-order function.

34

Post-order
• Traverse the left subtree by recursively

calling the post-order function.

• Traverse the right subtree by recursively
calling the post-order function.

• Display the data part of root element (or
current element).

35

• The access to a node allows the
processing of the information
contained in the respective node. For
this you can call a function that is
dependent of the specific problem
that implies traversal of the tree.

• In the following we will use the
process function.

void process(NOD *p)

36

Pre-order

void preord(NOD *p)
{
if(p != 0)

{
process(p);
preord(p -> left);
preord(p -> right);

}
}

37

In-order (symmetric)

void inord(NOD *p)
{
if(p != 0)

{
inord(p -> left);
process(p);
inord(p -> right);

}
}

38

Post-order

void postord (NOD *p)
{
if(p != 0)

{
postord (p -> left);
postord (p -> right);
process(p);

}
}

39

Example:

The same problem with a series of numbers:

20, 30, 5, 20, 4, 30, 7, 40, 25, 28, ...

40

Notes:
• The program from the laboratory (with

nodes containing words together with their
frequency of occurrence in a text) is
solved more easily by using a tree
(because the search operation in a list is
less efficient).

• The search process in a tree requires
fewer steps than the search in a list.

41

4. Deleting a binary tree

• to delete a binary tree is required to
traverse it and delete each node of that
tree (in a specific way).

• it is used the elibnod function.

• the tree will be traversed in postorder

42

Deleting a binary tree in
postorder

void delete_tree(NOD *p)
{
if(p != 0)

{
delete_tree (p -> left);
delete_tree (p -> right);
elibnod(p);

}
}

43

Notes:

• The delete_tree function does not assign
zero to the global variable (to proot).

• This assignment will be required
immediately after the call of the
delete_tree function.

proot=0;

44

• A degenerate binary tree – is the
one where all of the nodes
(except the last leaf) contain only
one sub node.

45

5. Deleting a node specified by a key
• The key is a part of every node and it is unique for each

of them:
typedef struct nod

{
< statements ; >
type key;
struct nod *left;
struct nod *right;

} NOD;
where the key type can be char, int, float or double.

• Especially leaf nodes can be deleted!

• Deleting a node that is not a leaf involves more
complicated operations to restore the binary tree
structure.

46

void search_delete(NOD *p, int c) /* the key is an integer here */

{

if (p != 0)

{

if ((p -> left = = p -> right) && (p -> left = = 0) && (p -> key = = c))

{

elibnod (p);

return;

}

search_delete(p -> left, c);

search_delete(p -> right, c);

}

}

Note: This operation, which includes search and delete, is processed in pre-
order.

47

Notes:

• At a closer look, from the above
function it lacks something: when a
leaf node identified was deleted from
his parent, then the father should have
the zero value for the recursive pointer
that correspond to the deleted direction
(node)!

• How can you solve this problem?

Supplementary note
• In some applications are required specific flattening

trees (having a low height) but with large numbers of
nodes.

• In such cases it may replace a binary tree with another
tree that allows a greater number of direct offsprings
(descendants).

• The procedure is relatively simple, and instead of two
recursive pointers (to the left subtree and to the right
one also), we can use a vector of recursive pointers
(having a certain length), which allows (for the new
type of structure) to define an arbitrary number of
direct descendants. 48

49

• A degenerate binary tree – is
the one where all of the nodes
(except the last leaf) contain only
one sub node.

50

Depth (or Height) of a Binary
Tree

• Usually, we can denote the depth of a
binary tree by using h (or i)

51

Depth and height
• The depth of a node is the number of edges

from the node to the tree's root node. A root
node will have a depth of 0.

• The height of a node is the number of edges
on the longest path from the node to a leaf.
The lowest leaf node will have a height of 0.

• For a binary tree, the height and depth
(globally) measure the same thing. 52

53

Special binary trees
P: A binary tree with the height i could have

a maximum number of 2i+1-1 nodes.

Notes:

A level with the depth k could have maximum 2k nodes

54

55

A proof by induction:
• It easily observed that previous declaration is

valid for i = 0, 1, 2 ...
• Therefore, we must prove the validity of the

declaration for the depth of i will implies a
validity for i + 1

We rely on the fact that any level of depth k
has a maximum of 2k nodes.

It is easy to notice that for the height of i+1 we get:
No_of_nodes = 2i+1 - 1 + 2i+1 = 2i+1(1 + 1) - 1 =
2i+12 - 1 = 2i+2 - 1 nodes

56

The full binary tree
A full binary tree is the one that has the maximum
number of vertices (2i+1-1) for a specified height of i.

For example, a full binary tree of height 2 is as follows :

A full binary tree is that one in which every node has two children
(excepting the last level with the leaves).

57

Notes:
• The full binary tree nodes are numbered from

the left to right according with their depth.

58

59

Complete binary tree
A binary tree with n nodes that has a height of i is
called as being a complete binary tree if it is
obtained from a full binary tree with a height of i, in
which there are eliminated the last consecutive nodes,
numbered with n+1, n+2, ... up to 2i+1-1.

Notes:
• A complete binary tree is a binary tree in

which every level, except possibly the last,
is completely filled, and all nodes are as
far left as possible.

60

61

62

Notes:

• A complete binary tree can be
sequentially represented using a
vector (noted T), in which the nodes of
depth k, from left to right, are inserted
in the following positions: T[2k],
T[2k+1], …, T[2k+1-1], excepting the
final level, which may be incomplete.

63

• Warning: This is a generic vector, which it begins with T [1]
(not with T [0], as usual in the C programing).

• We can make the necessary changes when we will write the
code in C.

64

Notes:
• The parent of a

node from T[i],
i>1, can be found
in T[i div 2] .

• The sons of a
node from T[i],
can be found (if
exist) in T[2i]
and T[2i + 1] .

65

66

We can define:

  },|max{ Znxnnx 

  },|min{ Znxnnx 

67

Useful properties:

1.

2.

3.

4.

    11  xxxxx

nnn










22




















ab
nb

a
n

and

and




















ab
nb

a
n a, b, n  Z;

a, b  0

 n  Z;

 x  R;





 







m
mn

m
n 1





 







m
mn

m
n 1

 n, m  N*;

68

The height of a complete binary
tree

• We have to demonstrate that the height of
a complete binary tree with n vertices is:

 ni 2log

69

Demonstration:
• Considering:

– n – number of nodes;
– i – height of the tree.

• We already know that:
– nmax = 2i+1-1 (when the binary tree is full)
– nmin = 2i (when on the last level we have only one node)

• It results that:

min2log ni   min2log ni  (1)

70

Since the logarithmic function is increasing
then:

      12log)12(loglog 1
2

1
2max2   in ii

(2)

Therefore:

  1log max2  in

From (1) and (2) it result that:

    1loglog max2min2  inni

  ni 2log

71

The heap tree
A heap is a specialized tree-based
data structure that satisfies the heap
property:

If A is a parent node of B then
the key of node A is ordered with
respect to the key of node B. The
same ordering is applied across
the entire heap.

The heap is not a classic binary tree!
There is no order between left and right son of a

father inside of a heap…

Example of a heap tree

72

Heap tree types

• Heaps can be classified further as either a
"max heap" or a "min heap".

• In a max heap, the keys of parent nodes
are always greater than or equal to those
of the children and the highest key is in the
root node.

• In a min heap, the keys of parent nodes
are less than or equal to those of the
children and the lowest key is in the root
node. 73

Notes:

• Usually, in many applications, a max heap
is simply called heap tree

• Any heap tree can be represented by a
vector (one-dimensional array)

74

75

Example:

This heap can be represented by the following vector:
10 7 9 4 7 5 2 2 1 6

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

76

Notes:
• In a heap tree we can make

modifications at the node level (changing
the value of the current node).

• Thus the value of a node can be
increased or decreased, resulting a
canceling of the specific order inside the
heap tree.

• The order of the heap can be simply
restored through two operations called
sift-down and sift-up.

77

sift-up (percolate) in a heap
sift-up = means to move a node up in
the tree, as long as needed; used to
restore heap condition after insertion.

• Called "sift" because node moves up the
tree until it reaches the correct level, as in
a sieve. Often incorrectly called "shift-up".

• It is also said that the changed value was
filtered (percolated) to his new position.

78

sift-down in a heap
sift-down = moves a node down in the tree,
similar to sift-up; used to restore heap
condition after deletion or replacement.

• If a node value decreases so that it becomes
lower than the elder son, it is enough to
change between them these two values, and
continue the process (downward) until the
heap property is restored.

• It is said that the changed value was sieved
(sift down) to his new position.

79

Note:

• Next, the vast majority of
functions will be written in a
pseudocode version

80

Pseudocode of the sift-down function
void sift_down (T[1…n], i)

{ int k, x, j;

k  i ;

do {

j  k ;

if ((2j ≤ n)  (T[2j] > T[k])) then k  2j;

if ((2j+1 ≤ n)  (T[2j+1] > T[k])) then k  2j+1;

x  T[j];

T[j]  T[k];

T[k]  x

} while (j  k)

}

81

Pseudocode of the sift-up function
void sift_up (T[1…n], i)

{ int k, j, x;

k  i ;

do {

j  k ;

if ((j > 1)  (T[j div 2] < T[k])) then k  j div 2;

x  T[j];

T[j]  T[k];

T[k]  x

} while (j  k)

}

