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TREES
(Recapitulation)

Tree structure
• A tree structure or tree diagram is a way of 

representing the hierarchical nature of a 
structure in a graphical form.

• It is named a "tree structure" because the 
classic representation resembles a tree, even 
though the chart is generally upside down 
compared to an actual tree, with the "root" at 
the top and the "leaves" at the bottom. 2
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• Definition 1: 
A tree is a directed graph, which 

has an acyclic structure and it is 
connected (from the root to every 
terminal node - or leaves).

• Definition 2: 
A tree is somehow similar with a 

list, being a collection of recursive 
data structures that has a dynamic 
nature.
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• Definition 3: 
By tree we understand a finite and non-empty 

group of elements called nodes:

TREE = {A1, A2, A3, ..., An}, where n> 0,

• which has the following properties:
- there is only one node, which is called the root of 
the tree.
- the rest of the nodes can be grouped in subsets of 
the initial tree, which also form trees. Those trees are 
called subtrees of the root.
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The nodes in a tree
(Recapitulation)

• Each node in a tree has zero or more child nodes, which are 
below it in the tree (trees are usually drawn growing 
downwards). 

• A node that has a child is called the child's parent node (or 
ancestor node, or superior). A node has at most one parent.

• An internal node (also known as an inner node) is any node of 
a tree that has child nodes. Similarly, a terminal node (also 
known as a leaf node) is any node that does not have child 
nodes.

• The topmost node in a tree is called the root node.
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Ordering
(Recapitulation)

• An ordered tree is a rooted 
tree for which an ordering is 
specified for the children of 
each vertex (node).
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Binary tree
(Recapitulation)

• A binary tree is a tree data 
structure in which each node has 
at most two children, which are 
referred to as the left child and 
the right child.

• There are maximum two disjoint 
groups for every parental node 
(each one being a binary tree).  
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Transformation
(Recapitulation)

• A binary tree it cannot be defined as a 
particular case of an ordered tree. Usually, 
a classic tree is never empty, while a 
binary tree can be empty, sometimes. 

• Any ordered tree can be always 
represented through a binary tree.
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Conversion of an classic ordered 
tree in a binary tree

(Recapitulation)
1. Links between them all brothers 

descendants of the same parent node 
and suppress their links with the parent, 
except the first son.

2. The former prime son node son becomes 
the left son of the parent, and the other 
former brothers become sequentially, the 
roots of right subtrees. Each of the 
brothers becomes downward the right 
son of its former big brother.  
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Using structures for building a 
binary tree

The node of a binary tree can be represented as another 
structural data type, called NOD, which is defined as follows:

typedef struct node
{

<statements>
struct node * left;
struct node * right;

} NOD;

where:
• left - is the pointer to the left son of the current node;
• right - is the pointer to the right son of the same node.
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In applications with binary trees we 
can define several operations such as:

1. Inserting a leaf node in a binary tree;

2. Accessing a node from a tree;

3. Traversing binary tree;

4. Delete a tree.
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• The operations of insertion and 
access to a node are based on a 
criteria that defines the place in the 
tree where the node in question can 
be inserted or found (according with 
the current operation which is 
involved). 

• This criterion is dependent on the 
specific problem where the binary 
tree concept is applied. 

Recapitulation
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The criterion function
This function has two parameters, which are pointers of  NOD 
type. Considering p1 as the first parameter of the criterion 
function and p2 the second one, then the criterion function will 
return:

-1 - if p2 indicates to a data of NOD type which can be 
inserted in the left subtree of the node pointed by p1;

1 - if p2 indicates to a data of NOD type which can be 
inserted in the right subtree of the node pointed by p1;

0 - if p2 is equivalent with p1.
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Example:

Let us consider the following set of numbers:

20, 30, 5, 20, 4, 30, 7, 40, 25, 28, ...
We have to build a tree, in which its nodes will contain the 
previous numbers along with their frequencies.

Basically all nodes from this tree will have two useful fields :
- the number;

- the frequency.
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A way to solve the problem:
a. p1 - is a pointer to a node from the tree to which the inserting 
is to be linked (p1 indicates initially to the root of the tree)

b. p2 – is a pointer to the current node (the node that will be 
inserted)

c. if p2->val < p1->val, then it tries to insert the current node into 
the left subtree of the node indicated by p1

d. if p2->val > p1->val, then it tries to insert the current node 
into the right subtree of the node indicated by p1

e. if p2->val = p1->val, then the current node will not be inserted 
in the tree, because it already exists a corresponding node for 
the current value.
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The current node is no longer inserted in the tree in 
the e case (when the criterion function returns 
zero). In this case, the nodes pointed by p1 and p2 
we consider to be equivalent.

typedef struct nod
{

int nr;
int frequency;
struct nod * left;
struct nod * right;

} NOD;
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In the case of the previous example, the 
criterion function is:

int criterion(NOD *p1, NOD *p2)

{

if(p2->nr < p1->nr) return(-1);

if(p2->nr > p1->nr) return(1);

return(0);

}



18

Function for treating the equivalence

• Usually, when we have two equivalent 
nodes, p1 is incremented (or processed in a 
specific way) and p2 is eliminated. 

• To achieve such processing is necessary to 
call a function that takes as parameters the 
pointers p1 and p2, and returns a NOD type 
pointer  (usually returns the value of p1 after 
deleting the p2). 

• We call this function: equivalence. It is 
dependent on the specific issue to be solved 
by the program.
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Example:

NOD *equivalence(NOD *q, NOD *p)

{

q -> frequency ++;

elibnod(p);

return(q);

}
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Other useful functions
(Recapitulation)

• In addition to the functions listed previously, we 
also use other specific functions for operations 
on binary trees. 

• Typical examples of functions : elibnod and
incnod

• Some functions use a global variable that is a 
pointer to the root of the tree.
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An example of function that is used in laboratory:

void elibnod(NOD *p)
/* Release the heap memory areas allocated by a 
pointer type node p */
{
free(p -> word);
free(p); 
}
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The entry in the tree
Recapitulation

• We denote proot a global variable to the 
root of the binary tree. 

• It is defined as:

NOD *proot;
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Inserting a leaf node in a binary tree 
Recapitulation

The function insnod inserts a node in the 
tree, according to the following steps:
1. It is allocated a memory area for the node to be 
inserted in the tree. Consider p being the pointer for 
this memory.

2. By calling the incnod function, we have to fill the 
node with data. If incnod returns 1, then jump to 
step 3. Otherwise the function returns the value 
zero (after deleting p).
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3. Assignments are made:
p->left = p->right = 0

since the new node is a leaf one.   

4. q = proot

5. Find the position in the tree where the insertion will 
be made (find the possible parent for the node which 
will be inserted):

i = criterion(q, p)

6. If i<0, then jump to step 7; otherwise jump to step 8.
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7. Try to insert the current node to the left subtree of the 
root q.
- If q -> left is zero, then the current node becomes the 
left leaf of q (q->left = p). Afterwards the function 
returns the value of p.
- Otherwise q = q->right , and jump to step 5.

8. If i>0, then jump to step 9; otherwise jump to step 10.
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9. Try to insert the current node to the right subtree of 
the root q.
- If q -> right is zero, then the current node becomes 
the right leaf of q (q->right = p). Afterwards the function 
returns the value of p.
- Otherwise q = q->right , and jump to step 5.

10. The current node cannot be inserted into the binary 
tree. Call the equivalence function.
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2. The access to a node of a tree

• Access to a node implies  a criterion for 
locating the relevant node in the tree.

• It will be used the criterion function.

• The function which performs the search will 
identify an equivalent node in the tree, with 
the one pointed by p (used as input 
parameter in the searching function).
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The searching function (denoted search)
will return: 

- a pointer to the equivalent node in the 
tree;

- 0, if there is no such equivalent node.
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NOD *search(NOD *p)
{

extern NOD * proot;
NOD *q;
int i;
if (prad = = 0) return 0;  /*the tree is empty*/
for (q = proot; q;  )

{
if ( (i = criterion(q, p)) = = 0)    return q;
else if (i < 0) q = q -> left;

else q = q -> right;
}

return 0;
}
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3. Tree traversal 
• Tree traversal is a form of graph traversal 

and refers to the process of visiting 
(examining or updating) each node in a 
tree data structure, exactly once, in a 
systematic way. 

• Such traversals are classified by the order 
in which the nodes are visited. 

• The following algorithms are described for 
a binary tree, but they may be generalized 
to other trees as well.



Traversing the nodes of a binary 
tree can be done in several ways:

• Pre-order

• In-order (symmetric)

• Post-order

31

Note: In the following, displaying may be replaced by processing 
(which is a more general task).
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Pre-order

• Display the data part of root element (or 
current element)

• Traverse the left subtree by recursively 
calling the pre-order function.

• Traverse the right subtree by recursively 
calling the pre-order function.
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In-order (symmetric)
• Traverse the left subtree by recursively 

calling the in-order function.

• Display the data part of root element (or 
current element).

• Traverse the right subtree by recursively 
calling the in-order function.
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Post-order
• Traverse the left subtree by recursively 

calling the post-order function.

• Traverse the right subtree by recursively 
calling the post-order function.

• Display the data part of root element (or 
current element).
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• The access to a node allows the 
processing of the information 
contained in the respective node. For 
this you can call a function that is 
dependent of the specific problem 
that implies traversal of the tree. 

• In the following we will use the 
process function. 

void process( NOD *p)
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Pre-order

void preord(NOD *p) 
{
if(p != 0)

{
process(p);
preord(p -> left);
preord(p -> right);

}
}
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In-order (symmetric)

void inord(NOD *p) 
{
if(p != 0)

{
inord(p -> left);
process(p);
inord(p -> right);

}
}
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Post-order

void postord (NOD *p) 
{
if(p != 0)

{
postord (p -> left);
postord (p -> right);
process(p);

}
}
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Example:

The same problem with a series of numbers:

20, 30, 5, 20, 4, 30, 7, 40, 25, 28, ...
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Notes:
• The program from the laboratory (with 

nodes containing words together with their 
frequency of occurrence in a text) is 
solved more easily by using a tree 
(because the search operation in a list is 
less efficient).

• The search process in a tree requires 
fewer steps than the search in a list.
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4. Deleting a binary tree

• to delete a binary tree is required to 
traverse it and delete each node of that 
tree (in a specific way).

• it is used the elibnod function.

• the tree will be traversed in postorder
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Deleting a binary tree in 
postorder

void delete_tree(NOD *p) 
{
if(p != 0)

{
delete_tree (p -> left);
delete_tree (p -> right);
elibnod(p);

}
}
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Notes:

• The delete_tree function does not assign 
zero to the global variable (to proot).

• This assignment will be required 
immediately after the call of the 
delete_tree function.

proot=0;
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• A degenerate binary tree – is the 
one where all of the nodes 
(except the last leaf) contain only 
one sub node.



45

5. Deleting a node specified by a key
• The key is a part of every node and it is unique for each 

of them:  
typedef struct nod

{
< statements ; >
type key;
struct nod *left;
struct nod *right;

}  NOD;
where the key type can be char, int, float or double.

• Especially leaf nodes can be deleted!

• Deleting a node that is not a leaf involves more 
complicated operations to restore the binary tree 
structure.
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void search_delete(NOD *p, int c)    /* the key is an integer here */

{

if (p != 0)

{

if (( p -> left = = p -> right) && ( p -> left = = 0 ) && ( p -> key = = c)) 

{

elibnod (p);

return;

}

search_delete(p -> left, c);  

search_delete(p -> right, c); 

}

}

Note: This operation, which includes search and delete, is processed in pre-
order.
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Notes:

• At a closer look, from the above 
function it lacks something: when a 
leaf node identified was deleted from 
his parent, then the father should have 
the zero value for the recursive pointer 
that correspond to the deleted direction 
(node)!

• How can you solve this problem?



Supplementary note
• In some applications are required specific flattening 

trees (having a low height) but with large numbers of 
nodes.

• In such cases it may replace a binary tree with another 
tree that allows a greater number of direct offsprings 
(descendants).

• The procedure is relatively simple, and instead of two 
recursive pointers (to the left subtree and to the right 
one also), we can use a vector of recursive pointers 
(having a certain length), which allows (for the new 
type of structure) to define an arbitrary number of 
direct descendants. 48
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• A degenerate binary tree – is 
the one where all of the nodes 
(except the last leaf) contain only 
one sub node.
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Depth (or Height) of a Binary 
Tree

• Usually, we can denote the depth of a 
binary tree by using h (or i)
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Depth and height
• The depth of a node is the number of edges 

from the node to the tree's root node. A root 
node will have a depth of 0.

• The height of a node is the number of edges 
on the longest path from the node to a leaf. 
The lowest leaf node will have a height of 0.

• For a binary tree, the height and depth 
(globally) measure the same thing. 52
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Special binary trees
P: A binary tree with the height  i could have 

a maximum number of 2i+1-1 nodes.

Notes:

A level with the depth k could have maximum 2k nodes
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A proof by induction:
• It easily observed that previous declaration is 

valid for i = 0, 1, 2 ...
• Therefore, we must prove the validity of the 

declaration for the depth of i will implies a 
validity for i + 1

We rely on the fact that any level of depth k
has a maximum of 2k nodes.

It is easy to notice that for the height of i+1 we get:
No_of_nodes = 2i+1 - 1 + 2i+1 = 2i+1(1 + 1) - 1 = 
2i+12 - 1 = 2i+2 - 1 nodes
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The full binary tree
A full binary tree is the one that has the maximum 
number of vertices (2i+1-1) for a specified height of i.

For example, a full binary tree of height 2 is as follows :

A full binary tree is that one in which every node  has two children 
(excepting the last level with the leaves).
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Notes:
• The full binary tree nodes are numbered from 

the left to right according with their depth.
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Complete binary tree
A binary tree with n nodes that has a height of i is 
called as being a complete binary tree if it is 
obtained from a full binary tree with a height of i, in 
which there are eliminated the last consecutive nodes, 
numbered with n+1, n+2, ... up to 2i+1-1.



Notes:
• A complete binary tree is a binary tree in 

which every level, except possibly the last, 
is completely filled, and all nodes are as 
far left as possible. 
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Notes:

• A complete binary tree can be 
sequentially represented using a 
vector (noted T), in which the nodes of 
depth k, from left to right, are inserted 
in the following positions: T[2k],
T[2k+1], …, T[2k+1-1], excepting the 
final level, which may be incomplete.
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• Warning: This is a generic vector, which it begins with T [1]
(not with T [0], as usual in the C programing). 

• We can make the necessary changes when we will write the 
code in C. 
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Notes:
• The parent of a 

node from T[i], 
i>1, can be found 
in T[i div 2] .

• The sons of a 
node from T[i], 
can be found (if 
exist) in T[2i]
and T[2i + 1] .
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We can define:

  },|max{ Znxnnx 

  },|min{ Znxnnx 



67

Useful properties:

1.

2.
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The height of a complete binary 
tree

• We have to demonstrate that the height of 
a complete binary tree with n vertices is: 

 ni 2log
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Demonstration:
• Considering:

– n – number of nodes;
– i – height of the tree.

• We already know that:
– nmax = 2i+1-1  (when the binary tree is full)
– nmin = 2i   (when on the last level we have only one node)

• It results that:

min2log ni   min2log ni  (1)
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Since the logarithmic function is increasing 
then:

      12log)12(loglog 1
2

1
2max2   in ii

(2)

Therefore:

  1log max2  in

From (1) and (2) it result that:

    1loglog max2min2  inni

  ni 2log
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The heap tree
A heap is a specialized tree-based 
data structure that satisfies the heap 
property: 

If A is a parent node of B then 
the key of node A is ordered with 
respect to the key of node B. The 
same ordering is applied across 
the entire heap.

The heap is not a classic binary tree!
There is no order between left and right son of a 

father inside of a heap…



Example of a heap tree 
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Heap tree types

• Heaps can be classified further as either a 
"max heap" or a "min heap". 

• In a max heap, the keys of parent nodes 
are always greater than or equal to those 
of the children and the highest key is in the 
root node. 

• In a min heap, the keys of parent nodes 
are less than or equal to those of the 
children and the lowest key is in the root 
node. 73



Notes: 

• Usually, in many applications, a max heap 
is simply called heap tree

• Any heap tree can be represented by a 
vector (one-dimensional array)

74



75

Example:

This heap can be represented by the following vector:
10 7 9 4 7 5 2 2 1 6

T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]
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Notes:
• In a heap tree we can make 

modifications at the node level (changing 
the value of the current node).

• Thus the value of a node can be 
increased or decreased, resulting a 
canceling of the specific order inside the 
heap tree.

• The order of the heap can be simply 
restored through two operations called 
sift-down and sift-up. 
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sift-up (percolate) in a heap
sift-up = means to move a node up in 
the tree, as long as needed; used to 
restore heap condition after insertion. 

• Called "sift" because node moves up the 
tree until it reaches the correct level, as in 
a sieve. Often incorrectly called "shift-up".

• It is also said that the changed value was 
filtered (percolated) to his new position.
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sift-down in a heap
sift-down = moves a node down in the tree, 
similar to sift-up; used to restore heap 
condition after deletion or replacement.

• If a node value decreases so that it becomes 
lower than the elder son, it is enough to 
change between them these two values, and 
continue the process (downward) until the 
heap property is restored.

• It is said that the changed value was sieved 
(sift down) to his new position.
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Note:

• Next, the vast majority of 
functions will be written in a 
pseudocode version
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Pseudocode of the sift-down function
void sift_down (T[1…n], i)

{ int k, x, j;

k  i ;

do {

j  k ;

if ((2j ≤ n)  (T[2j] > T[k]))  then k  2j;

if ((2j+1 ≤ n)  (T[2j+1] > T[k]))  then k  2j+1;

x  T[j];

T[j]  T[k];

T[k]  x

} while (j  k)

}
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Pseudocode of the sift-up function
void sift_up (T[1…n], i)

{ int k, j, x;

k  i ;

do {

j  k ;

if ((j > 1)  (T[ j div 2] < T[k]))  then k  j div 2;

x  T[ j];

T[ j]  T[k];

T[k]  x

} while (j  k)

}


