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Doubly linked list
Recapitulation

• A doubly-linked list is a linked data 
structure that consists of a set of 
sequentially linked nodes. Each node 
contains two fields, called links, that are 
references to the previous and to the next 
node in the sequence of nodes. The 
beginning and ending nodes' previous
and next links, respectively, point to some 
kind of terminator (typically null).
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Notes:

• It is considered the following type:
typedef struct nod

{ <statements>;
struct nod *prev;
struct nod *next;

} NOD;



4

<- last

DATA

next

DATA

next

DATA

first

0 next

0

next

prev

first ->

next

prev

next

prev

0next

prev

last ->



5

Graph theory
Recapitulation

Definition:

Usually a graph is a pair like:
G = <V, M>

where V is a set of vertices (or 
nodes), and M  VV is a set of 
edges (lines or links).



Examples
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• A graph may be undirected, 
meaning that there is no distinction 
between the two vertices 
associated with each edge, or its 
edges may be directed from one 
vertex to another
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Usually, the line from the node a
to the node b is denoted with:

- ordered pair (a, b) if the graph 
is directed;

- unordered pair {a, b} if the 
graph is undirected.



9

In practical applications we can 
find different kinds of graphs:

- directed,

- undirected,

- mixed.
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A path (route) is a sequence of edges of 
the following forms : 

- (a1, a2), (a2, a3), (a3, a4), ... , (an-1, an) if 
the graph is directed

- {a1, a2}, {a2, a3}, {a3, a4}, ... , {an-1, an} if 
the graph is undirected
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Definitions
• The length of a path = the number of edges.

• A simple path = a path in which the peaks are 
not repeated.

• Cycle = is a simple path except the first and last 
peak, which are the same.

• Directed acyclic graph = is a directed graph with 
no directed cycles.
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We call a subgraph G’ (of the graph G):

G’ = <V’, M’>

where V’ V, and M’  M (the vertices 
are a subset of the vertex set of G, and 
the edges are a subset of the initial 
edge set).



14

A partial graph G" spans a initial graph 
G, and usually it has the same vertex 
set, but a diminished number of edges.

G’’ = <V, M’’>

M’’  M (but G” has the same vertex 
set V).
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Connectivity
• If it is possible to establish a path from any 

vertex to any other vertex of a graph, the 
graph is said to be connected; otherwise, 
the graph is disconnected. 

• A graph is totally disconnected if there is 
no path connecting any pair of vertices 
(this is just another name to describe an 
empty graph or independent set).
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Representations
Different data structures for the representation of 
graphs are used in practice:

• Adjacency list 

• Adjacency matrix

• Incidence matrix



Adjacency list 
• Vertices are stored as records or objects, 

and every vertex stores a list of adjacent 
vertices. 

• This data structure allows the storage of 
additional data on the vertices. 

• Additional data can be stored if edges are 
also stored as objects, in which case each 
vertex stores its incident edges and each 
edge stores its incident vertices.
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Adjacency matrix 
• A two-dimensional matrix, in which the 

rows represent source vertices and 
columns represent destination vertices. 

• Data on edges and vertices must be 
stored externally. 

• Only the cost for one edge can be stored 
between each pair of vertices.
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Incidence matrix 
• A two-dimensional Boolean matrix, in 

which the rows represent the vertices and 
columns represent the edges. 

• The entries indicate whether the vertex at 
a row is incident to the edge at a column.
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TREES
Tree structure

• A tree structure or tree diagram is a way of 
representing the hierarchical nature of a 
structure in a graphical form.

• It is named a "tree structure" because the 
classic representation resembles a tree, 
even though the chart is generally upside 
down compared to an actual tree, with the 
"root" at the top and the "leaves" at the 
bottom. 20
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• Definition 1: 
A tree is a directed graph, 

which has an acyclic structure 
and it is connected (from the 
root to every terminal node - or 
leaves).



22

• Definition 2: 
A tree is somehow similar 

with a list, being a collection of 
recursive data structures that 
has a dynamic nature.
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• Definition 3:

By tree we understand a finite and non-empty 
group of elements called nodes:

TREE = {A1, A2, A3, ..., An}, where n> 0,

which has the following properties:
- there is only one node, which is called the root of the 
tree;
- the rest of the nodes can be grouped in subsets of 
the initial tree, which also form trees. Those trees are 
called subtrees of the root.
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Example of a tree as a particular graph
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The nodes in a tree
• Each node in a tree has zero or more child nodes, which are 

below it in the tree (trees are usually drawn growing 
downwards). 

• A node that has a child is called the child's parent node (or 
ancestor node, or superior). A node has at most one parent.

• An internal node (also known as an inner node) is any node 
of a tree that has child nodes. Similarly, a terminal node (also 
known as a leaf node) is any node that does not have child 
nodes.

• The topmost node in a tree is called the root node.
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Ordering

• An ordered tree is a rooted 
tree for which an ordering is 
specified for the children of 
each vertex (node).
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Binary tree
• A binary tree is a tree data 

structure in which each node has 
at most two children, which are 
referred to as the left child and 
the right child.

• There are maximum two disjoint 
groups for every parental node 
(each one being a binary tree).  
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Notes:

• Usually, one of the groups is called the 
left subtree of the root, and the other 
one the right subtree. 

• The binary tree is ordered, because in 
each node, the left subtree is 
considered to precede the right 
subtree. 

• In other words, we can say that the left 
descendant is older that the right one. 
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• Sometimes, a node of a binary tree can 
have only one descendant. This can be 
the left subtree or the right subtree. 

• The two possibilities are considered 
distinct.

Notes (cont.)
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Transformation
• A binary tree it cannot be defined as a 

particular case of an ordered tree. Usually, 
a classic tree is never empty, while a 
binary tree can be empty, sometimes. 

• Any ordered tree can be always 
represented through a binary tree.
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Conversion of an classic ordered 
tree in a binary tree

1. Firstly, we have to link, between them, all 
brothers descendants of the same parent 
node and suppress the links with the parent, 
except the first son.

2. Then, the former prime son node (the older 
one) becomes the left son of the parent, and 
the other former brothers become (in a 
sequentially way) the roots of the right 
subtrees. Each of the brothers becomes 
downward the right son of its former big 
brother.  
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Using structures for building a 
binary tree

The node of a binary tree can be represented as another 
structural data type, called NOD, which is defined as follows:

typedef struct node
{

<statements>
struct node * left;
struct node * right;

} NOD;

where:
• left - is the pointer to the left son of the current node;
• right - is the pointer to the right son of the same node.
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In applications with binary trees we 
can define several operations such as:

1. Inserting a leaf node in a binary tree;

2. Access to a node of a tree;

3. Traversal the tree;

4. Delete a tree.
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• The operations of insertion and 
access to a node are based on a 
criteria that defines the place in the 
tree where the node in question can 
be inserted or found (according with 
the current operation which is 
involved). 

• This criterion is dependent on the 
specific problem where the binary 
tree concept is applied. 
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The criterion function
This function has two parameters, which are pointers of  NOD 
type. Considering p1 as the first parameter of the criterion 
function and p2 the second one, then the criterion function will 
return:

-1 - if p2 indicates to a data of NOD type which can be 
inserted in the left subtree of the node pointed by p1;

1 - if p2 indicates to a data of NOD type which can be 
inserted in the right subtree of the node pointed by p1;

0 - if p2 is equivalent with p1.
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When we are building a tree, it is 
established a criterion to find the position in 
which will be inserted the new current node 
in the tree – i.e. for the corresponding node 
of the last acquired value (or set of values).

More explanations
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Example:

Let us consider the following set of numbers:

20, 30, 5, 20, 4, 30, 7, 40, 25, 28, ...
We have to build a tree, in which its nodes will contain the 
previous numbers along with their frequencies.

Basically all nodes from this tree will have two useful fields :
- the number;

- the frequency.
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A way to solve the problem:
a. p1 - is a pointer to a node from the tree to which the inserting 
is to be linked (p1 indicates initially to the root of the tree)

b. p2 – is a pointer to the current node (the node that will be 
inserted)

c. if p2->val < p1->val, then it tries to insert the current node into 
the left subtree of the node indicated by p1

d. if p2->val > p1->val, then it tries to insert the current node 
into the right subtree of the node indicated by p1

e. if p2->val = p1->val, then the current node will not be inserted 
in the tree, because it already exists a corresponding node for 
the current value.
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The current node is no longer inserted in the tree in 
the e case (when the criterion function returns 
zero). In this case, the nodes pointed by p1 and p2 
we consider to be equivalent.

typedef struct nod
{

int nr;
int frequency;
struct nod * left;
struct nod * right;

} NOD;
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In the case of the previous example, the 
criterion function is:

int criterion(NOD *p1, NOD *p2)

{

if(p2->nr < p1->nr) return(-1);

if(p2->nr > p1->nr) return(1);

return(0);

}
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Function for treating the equivalence

• Usually, when we have two equivalent 
nodes, p1 is incremented (or processed in a 
specific way) and p2 is eliminated. 

• To achieve such processing is necessary to 
call a function that takes as parameters the 
pointers p1 and p2, and returns a NOD type 
pointer  (usually returns the value of p1 after 
deleting the p2). 

• We call this function: equivalence. It is 
dependent on the specific issue to be solved 
by the program.
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Example:

NOD *equivalence(NOD *q, NOD *p)

{

q -> frequency ++;

elibnod(p);

return(q);

}
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Other useful functions
• In addition to the functions listed previously, we 

also use other specific functions for operations 
on binary trees. 

• Typical examples of functions : elibnod and
incnod

• Some functions use a global variable that is a 
pointer to the root of the tree.
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An example of function that is used in laboratory:

void elibnod(NOD *p)
/* Release the heap memory areas allocated by a 
pointer type node p */
{
free(p -> word);
free(p); 
}
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The entry in the tree

• We denote proot a global variable to the 
root of the binary tree. 

• It is defined as:

NOD *proot;
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Next we use some functions based 
on the global variable proot.



47

Inserting a leaf node in a 
binary tree

The function insnod inserts a node in the 
tree, according to the following steps:
1. It is allocated a memory area for the node to be 
inserted in the tree. Consider p being the pointer for 
this memory.

2. By calling the incnod function, we have to fill the 
node with data. If incnod returns 1, then jump to 
step 3. Otherwise the function returns the value 
zero (after deleting p).
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3. Assignments are made:
p->left = p->right = 0

since the new node is a leaf one.   

4. q = proot

5. Find the position in the tree where the insertion will 
be made (find the possible parent for the node which 
will be inserted):

i = criterion(q, p)

6. If i<0, then jump to step 7; otherwise jump to step 8.
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7. Try to insert the current node to the left subtree of the 
root q.
- If q -> left is zero, then the current node becomes the 
left leaf of q (q->left = p). Afterwards the function 
returns the value of p.
- Otherwise q = q->left , and jump to step 5.

8. If i>0, then jump to step 9; otherwise jump to step 10.
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9. Try to insert the current node to the right subtree of 
the root q.
- If q -> right is zero, then the current node becomes 
the right leaf of q (q->right = p). Afterwards the function 
returns the value of p.
- Otherwise q = q->right , and jump to step 5.

10. The current node cannot be inserted into the binary 
tree. Call the equivalence function.
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2. The access to a node of a tree

• Access to a node implies  a criterion for 
locating the relevant node in the tree.

• It will be used the criterion function.

• The function which performs the search will 
identify an equivalent node in the tree, with 
the one pointed by p (used as input 
parameter in the searching function).
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The searching function (denoted search)
will return: 

- a pointer to the equivalent node in the 
tree;

- 0, if there is no such equivalent node.
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NOD *search(NOD *p)
{

extern NOD *proot;
NOD *q;
int i;
if (proot = = 0) return 0;  /*the tree is empty*/
for (q = proot; q;  )

{
if ( (i = criterion(q, p)) = = 0)    return q;
else if (i < 0) q = q -> left;

else q = q -> right;
}

return 0;
}
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3. Tree traversal 
• Tree traversal is a form of graph traversal 

and refers to the process of visiting 
(examining or updating) each node in a 
tree data structure, exactly once, in a 
systematic way. 

• Such traversals are classified by the order 
in which the nodes are visited. 

• The following algorithms are described for 
a binary tree, but they may be generalized 
to other trees as well.



Traversing the nodes of a binary 
tree can be done in several ways:

• Pre-order

• In-order (symmetric)

• Post-order
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Note: In the following, displaying may be replaced by processing 
(which is a more general task).
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Pre-order

• Display the data part of root element (or 
current element)

• Traverse the left subtree by recursively 
calling the pre-order function.

• Traverse the right subtree by recursively 
calling the pre-order function.
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In-order (symmetric)
• Traverse the left subtree by recursively 

calling the in-order function.

• Display the data part of root element (or 
current element).

• Traverse the right subtree by recursively 
calling the in-order function.
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Post-order
• Traverse the left subtree by recursively 

calling the post-order function.

• Traverse the right subtree by recursively 
calling the post-order function.

• Display the data part of root element (or 
current element).
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• The access to a node allows the 
processing of the information 
contained in the respective node. For 
this you can call a function that is 
dependent of the specific problem 
that implies traversal of the tree. 

• In the following we will use the 
process function. 

void process( NOD *p)
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Pre-order

void preord(NOD *p) 
{
if(p != 0)

{
process(p);
preord(p -> left);
preord(p -> right);

}
}
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In-order (symmetric)

void inord(NOD *p) 
{
if(p != 0)

{
inord(p -> left);
process(p);
inord(p -> right);

}
}
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Post-order

void postord (NOD *p) 
{
if(p != 0)

{
postord (p -> left);
postord (p -> right);
process(p);

}
}



63

Example:

The same problem with a series of numbers:

20, 30, 5, 20, 4, 30, 7, 40, 25, 28, ...
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Notes:
• The program from the laboratory (with 

nodes containing words together with their 
frequency of occurrence in a text) is 
solved more easily by using a tree 
(because the search operation in a list is 
less efficient).

• The search process in a tree requires 
fewer steps than the search in a list.
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4. Deleting a binary tree

• to delete a binary tree is required to 
traverse it and delete each node of that 
tree (in a specific way).

• it is used the elibnod function.

• the tree will be traversed in postorder
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Deleting a binary tree in 
postorder

void delete_tree(NOD *p) 
{
if(p != 0)

{
delete_tree (p -> left);
delete_tree (p -> right);
elibnod(p);

}
}
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Notes:

• The delete_tree function does not assign 
zero to the global variable (to proot).

• This assignment will be required 
immediately after the call of the 
delete_tree function.

proot=0;
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• A degenerate binary tree – is the 
one where all of the nodes 
(except the last leaf) contain only 
one sub node.
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5. Deleting a node specified by a key
• The key is a part of every node and it is unique for each 

of them:  
typedef struct nod

{
< statements ; >
type key;
struct nod *left;
struct nod *right;

}  NOD;
where the key type can be char, int, float or double.

• Especially leaf nodes can be deleted!

• Deleting a node that is not a leaf involves more 
complicated operations to restore the binary tree 
structure.
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void search_delete(NOD *p, int c)    /* the key is an integer here */

{

if (p != 0)

{

if (( p -> left = = p -> right) && ( p -> left = = 0 ) && ( p -> key = = c)) 

{

elibnod (p);

return;

}

search_delete(p -> left, c);  

search_delete(p -> right, c); 

}

}

Note: This operation, which includes search and delete, is processed in pre-
order.
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Notes:

• At a closer look, from the above 
function it lacks something: when a 
leaf node identified was deleted from 
his parent, then the father should have 
the zero value for the recursive pointer 
that correspond to the deleted direction 
(node)!

• How can you solve this problem?



Supplementary note
• In some applications are required specific flattening 

trees (having a low height) but with large numbers of 
nodes.

• In such cases it may replace a binary tree with another 
tree that allows a greater number of direct offsprings 
(descendants).

• The procedure is relatively simple, and instead of two 
recursive pointers (to the left subtree and to the right 
one also), we can use a vector of recursive pointers 
(having a certain length), which allows (for the new 
type of structure) to define an arbitrary number of 
direct descendants. 72


