
Data Structures and
Algorithms (DSA)

Course 9
Trees

Iulian Năstac

2

Doubly linked list
Recapitulation

• A doubly-linked list is a linked data
structure that consists of a set of
sequentially linked nodes. Each node
contains two fields, called links, that are
references to the previous and to the next
node in the sequence of nodes. The
beginning and ending nodes' previous
and next links, respectively, point to some
kind of terminator (typically null).

3

Notes:

• It is considered the following type:
typedef struct nod

{ <statements>;
struct nod *prev;
struct nod *next;

} NOD;

4

<- last

DATA

next

DATA

next

DATA

first

0 next

0

next

prev

first ->

next

prev

next

prev

0next

prev

last ->

5

Graph theory
Recapitulation

Definition:

Usually a graph is a pair like:
G = <V, M>

where V is a set of vertices (or
nodes), and M  VV is a set of
edges (lines or links).

Examples

6

• A graph may be undirected,
meaning that there is no distinction
between the two vertices
associated with each edge, or its
edges may be directed from one
vertex to another

7

8

Usually, the line from the node a
to the node b is denoted with:

- ordered pair (a, b) if the graph
is directed;

- unordered pair {a, b} if the
graph is undirected.

9

In practical applications we can
find different kinds of graphs:

- directed,

- undirected,

- mixed.

10

11

A path (route) is a sequence of edges of
the following forms :

- (a1, a2), (a2, a3), (a3, a4), ... , (an-1, an) if
the graph is directed

- {a1, a2}, {a2, a3}, {a3, a4}, ... , {an-1, an} if
the graph is undirected

12

Definitions
• The length of a path = the number of edges.

• A simple path = a path in which the peaks are
not repeated.

• Cycle = is a simple path except the first and last
peak, which are the same.

• Directed acyclic graph = is a directed graph with
no directed cycles.

13

We call a subgraph G’ (of the graph G):

G’ = <V’, M’>

where V’ V, and M’  M (the vertices
are a subset of the vertex set of G, and
the edges are a subset of the initial
edge set).

14

A partial graph G" spans a initial graph
G, and usually it has the same vertex
set, but a diminished number of edges.

G’’ = <V, M’’>

M’’  M (but G” has the same vertex
set V).

15

Connectivity
• If it is possible to establish a path from any

vertex to any other vertex of a graph, the
graph is said to be connected; otherwise,
the graph is disconnected.

• A graph is totally disconnected if there is
no path connecting any pair of vertices
(this is just another name to describe an
empty graph or independent set).

16

Representations
Different data structures for the representation of
graphs are used in practice:

• Adjacency list

• Adjacency matrix

• Incidence matrix

Adjacency list
• Vertices are stored as records or objects,

and every vertex stores a list of adjacent
vertices.

• This data structure allows the storage of
additional data on the vertices.

• Additional data can be stored if edges are
also stored as objects, in which case each
vertex stores its incident edges and each
edge stores its incident vertices.

17

Adjacency matrix
• A two-dimensional matrix, in which the

rows represent source vertices and
columns represent destination vertices.

• Data on edges and vertices must be
stored externally.

• Only the cost for one edge can be stored
between each pair of vertices.

18

Incidence matrix
• A two-dimensional Boolean matrix, in

which the rows represent the vertices and
columns represent the edges.

• The entries indicate whether the vertex at
a row is incident to the edge at a column.

19

TREES
Tree structure

• A tree structure or tree diagram is a way of
representing the hierarchical nature of a
structure in a graphical form.

• It is named a "tree structure" because the
classic representation resembles a tree,
even though the chart is generally upside
down compared to an actual tree, with the
"root" at the top and the "leaves" at the
bottom. 20

21

• Definition 1:
A tree is a directed graph,

which has an acyclic structure
and it is connected (from the
root to every terminal node - or
leaves).

22

• Definition 2:
A tree is somehow similar

with a list, being a collection of
recursive data structures that
has a dynamic nature.

23

• Definition 3:

By tree we understand a finite and non-empty
group of elements called nodes:

TREE = {A1, A2, A3, ..., An}, where n> 0,

which has the following properties:
- there is only one node, which is called the root of the
tree;
- the rest of the nodes can be grouped in subsets of
the initial tree, which also form trees. Those trees are
called subtrees of the root.

24

Example of a tree as a particular graph

25

The nodes in a tree
• Each node in a tree has zero or more child nodes, which are

below it in the tree (trees are usually drawn growing
downwards).

• A node that has a child is called the child's parent node (or
ancestor node, or superior). A node has at most one parent.

• An internal node (also known as an inner node) is any node
of a tree that has child nodes. Similarly, a terminal node (also
known as a leaf node) is any node that does not have child
nodes.

• The topmost node in a tree is called the root node.

26

Ordering

• An ordered tree is a rooted
tree for which an ordering is
specified for the children of
each vertex (node).

27

Binary tree
• A binary tree is a tree data

structure in which each node has
at most two children, which are
referred to as the left child and
the right child.

• There are maximum two disjoint
groups for every parental node
(each one being a binary tree).

28

Notes:

• Usually, one of the groups is called the
left subtree of the root, and the other
one the right subtree.

• The binary tree is ordered, because in
each node, the left subtree is
considered to precede the right
subtree.

• In other words, we can say that the left
descendant is older that the right one.

29

• Sometimes, a node of a binary tree can
have only one descendant. This can be
the left subtree or the right subtree.

• The two possibilities are considered
distinct.

Notes (cont.)

30

Transformation
• A binary tree it cannot be defined as a

particular case of an ordered tree. Usually,
a classic tree is never empty, while a
binary tree can be empty, sometimes.

• Any ordered tree can be always
represented through a binary tree.

31

Conversion of an classic ordered
tree in a binary tree

1. Firstly, we have to link, between them, all
brothers descendants of the same parent
node and suppress the links with the parent,
except the first son.

2. Then, the former prime son node (the older
one) becomes the left son of the parent, and
the other former brothers become (in a
sequentially way) the roots of the right
subtrees. Each of the brothers becomes
downward the right son of its former big
brother.

32

Using structures for building a
binary tree

The node of a binary tree can be represented as another
structural data type, called NOD, which is defined as follows:

typedef struct node
{

<statements>
struct node * left;
struct node * right;

} NOD;

where:
• left - is the pointer to the left son of the current node;
• right - is the pointer to the right son of the same node.

33

In applications with binary trees we
can define several operations such as:

1. Inserting a leaf node in a binary tree;

2. Access to a node of a tree;

3. Traversal the tree;

4. Delete a tree.

34

• The operations of insertion and
access to a node are based on a
criteria that defines the place in the
tree where the node in question can
be inserted or found (according with
the current operation which is
involved).

• This criterion is dependent on the
specific problem where the binary
tree concept is applied.

35

The criterion function
This function has two parameters, which are pointers of NOD
type. Considering p1 as the first parameter of the criterion
function and p2 the second one, then the criterion function will
return:

-1 - if p2 indicates to a data of NOD type which can be
inserted in the left subtree of the node pointed by p1;

1 - if p2 indicates to a data of NOD type which can be
inserted in the right subtree of the node pointed by p1;

0 - if p2 is equivalent with p1.

36

When we are building a tree, it is
established a criterion to find the position in
which will be inserted the new current node
in the tree – i.e. for the corresponding node
of the last acquired value (or set of values).

More explanations

37

Example:

Let us consider the following set of numbers:

20, 30, 5, 20, 4, 30, 7, 40, 25, 28, ...
We have to build a tree, in which its nodes will contain the
previous numbers along with their frequencies.

Basically all nodes from this tree will have two useful fields :
- the number;

- the frequency.

38

A way to solve the problem:
a. p1 - is a pointer to a node from the tree to which the inserting
is to be linked (p1 indicates initially to the root of the tree)

b. p2 – is a pointer to the current node (the node that will be
inserted)

c. if p2->val < p1->val, then it tries to insert the current node into
the left subtree of the node indicated by p1

d. if p2->val > p1->val, then it tries to insert the current node
into the right subtree of the node indicated by p1

e. if p2->val = p1->val, then the current node will not be inserted
in the tree, because it already exists a corresponding node for
the current value.

39

The current node is no longer inserted in the tree in
the e case (when the criterion function returns
zero). In this case, the nodes pointed by p1 and p2
we consider to be equivalent.

typedef struct nod
{

int nr;
int frequency;
struct nod * left;
struct nod * right;

} NOD;

40

In the case of the previous example, the
criterion function is:

int criterion(NOD *p1, NOD *p2)

{

if(p2->nr < p1->nr) return(-1);

if(p2->nr > p1->nr) return(1);

return(0);

}

41

Function for treating the equivalence

• Usually, when we have two equivalent
nodes, p1 is incremented (or processed in a
specific way) and p2 is eliminated.

• To achieve such processing is necessary to
call a function that takes as parameters the
pointers p1 and p2, and returns a NOD type
pointer (usually returns the value of p1 after
deleting the p2).

• We call this function: equivalence. It is
dependent on the specific issue to be solved
by the program.

42

Example:

NOD *equivalence(NOD *q, NOD *p)

{

q -> frequency ++;

elibnod(p);

return(q);

}

43

Other useful functions
• In addition to the functions listed previously, we

also use other specific functions for operations
on binary trees.

• Typical examples of functions : elibnod and
incnod

• Some functions use a global variable that is a
pointer to the root of the tree.

44

An example of function that is used in laboratory:

void elibnod(NOD *p)
/* Release the heap memory areas allocated by a
pointer type node p */
{
free(p -> word);
free(p);
}

45

The entry in the tree

• We denote proot a global variable to the
root of the binary tree.

• It is defined as:

NOD *proot;

46

Next we use some functions based
on the global variable proot.

47

Inserting a leaf node in a
binary tree

The function insnod inserts a node in the
tree, according to the following steps:
1. It is allocated a memory area for the node to be
inserted in the tree. Consider p being the pointer for
this memory.

2. By calling the incnod function, we have to fill the
node with data. If incnod returns 1, then jump to
step 3. Otherwise the function returns the value
zero (after deleting p).

48

3. Assignments are made:
p->left = p->right = 0

since the new node is a leaf one.

4. q = proot

5. Find the position in the tree where the insertion will
be made (find the possible parent for the node which
will be inserted):

i = criterion(q, p)

6. If i<0, then jump to step 7; otherwise jump to step 8.

49

7. Try to insert the current node to the left subtree of the
root q.
- If q -> left is zero, then the current node becomes the
left leaf of q (q->left = p). Afterwards the function
returns the value of p.
- Otherwise q = q->left , and jump to step 5.

8. If i>0, then jump to step 9; otherwise jump to step 10.

50

9. Try to insert the current node to the right subtree of
the root q.
- If q -> right is zero, then the current node becomes
the right leaf of q (q->right = p). Afterwards the function
returns the value of p.
- Otherwise q = q->right , and jump to step 5.

10. The current node cannot be inserted into the binary
tree. Call the equivalence function.

51

2. The access to a node of a tree

• Access to a node implies a criterion for
locating the relevant node in the tree.

• It will be used the criterion function.

• The function which performs the search will
identify an equivalent node in the tree, with
the one pointed by p (used as input
parameter in the searching function).

52

The searching function (denoted search)
will return:

- a pointer to the equivalent node in the
tree;

- 0, if there is no such equivalent node.

53

NOD *search(NOD *p)
{

extern NOD *proot;
NOD *q;
int i;
if (proot = = 0) return 0; /*the tree is empty*/
for (q = proot; q;)

{
if ((i = criterion(q, p)) = = 0) return q;
else if (i < 0) q = q -> left;

else q = q -> right;
}

return 0;
}

54

3. Tree traversal
• Tree traversal is a form of graph traversal

and refers to the process of visiting
(examining or updating) each node in a
tree data structure, exactly once, in a
systematic way.

• Such traversals are classified by the order
in which the nodes are visited.

• The following algorithms are described for
a binary tree, but they may be generalized
to other trees as well.

Traversing the nodes of a binary
tree can be done in several ways:

• Pre-order

• In-order (symmetric)

• Post-order

55

Note: In the following, displaying may be replaced by processing
(which is a more general task).

56

Pre-order

• Display the data part of root element (or
current element)

• Traverse the left subtree by recursively
calling the pre-order function.

• Traverse the right subtree by recursively
calling the pre-order function.

57

In-order (symmetric)
• Traverse the left subtree by recursively

calling the in-order function.

• Display the data part of root element (or
current element).

• Traverse the right subtree by recursively
calling the in-order function.

58

Post-order
• Traverse the left subtree by recursively

calling the post-order function.

• Traverse the right subtree by recursively
calling the post-order function.

• Display the data part of root element (or
current element).

59

• The access to a node allows the
processing of the information
contained in the respective node. For
this you can call a function that is
dependent of the specific problem
that implies traversal of the tree.

• In the following we will use the
process function.

void process(NOD *p)

60

Pre-order

void preord(NOD *p)
{
if(p != 0)

{
process(p);
preord(p -> left);
preord(p -> right);

}
}

61

In-order (symmetric)

void inord(NOD *p)
{
if(p != 0)

{
inord(p -> left);
process(p);
inord(p -> right);

}
}

62

Post-order

void postord (NOD *p)
{
if(p != 0)

{
postord (p -> left);
postord (p -> right);
process(p);

}
}

63

Example:

The same problem with a series of numbers:

20, 30, 5, 20, 4, 30, 7, 40, 25, 28, ...

64

Notes:
• The program from the laboratory (with

nodes containing words together with their
frequency of occurrence in a text) is
solved more easily by using a tree
(because the search operation in a list is
less efficient).

• The search process in a tree requires
fewer steps than the search in a list.

65

4. Deleting a binary tree

• to delete a binary tree is required to
traverse it and delete each node of that
tree (in a specific way).

• it is used the elibnod function.

• the tree will be traversed in postorder

66

Deleting a binary tree in
postorder

void delete_tree(NOD *p)
{
if(p != 0)

{
delete_tree (p -> left);
delete_tree (p -> right);
elibnod(p);

}
}

67

Notes:

• The delete_tree function does not assign
zero to the global variable (to proot).

• This assignment will be required
immediately after the call of the
delete_tree function.

proot=0;

68

• A degenerate binary tree – is the
one where all of the nodes
(except the last leaf) contain only
one sub node.

69

5. Deleting a node specified by a key
• The key is a part of every node and it is unique for each

of them:
typedef struct nod

{
< statements ; >
type key;
struct nod *left;
struct nod *right;

} NOD;
where the key type can be char, int, float or double.

• Especially leaf nodes can be deleted!

• Deleting a node that is not a leaf involves more
complicated operations to restore the binary tree
structure.

70

void search_delete(NOD *p, int c) /* the key is an integer here */

{

if (p != 0)

{

if ((p -> left = = p -> right) && (p -> left = = 0) && (p -> key = = c))

{

elibnod (p);

return;

}

search_delete(p -> left, c);

search_delete(p -> right, c);

}

}

Note: This operation, which includes search and delete, is processed in pre-
order.

71

Notes:

• At a closer look, from the above
function it lacks something: when a
leaf node identified was deleted from
his parent, then the father should have
the zero value for the recursive pointer
that correspond to the deleted direction
(node)!

• How can you solve this problem?

Supplementary note
• In some applications are required specific flattening

trees (having a low height) but with large numbers of
nodes.

• In such cases it may replace a binary tree with another
tree that allows a greater number of direct offsprings
(descendants).

• The procedure is relatively simple, and instead of two
recursive pointers (to the left subtree and to the right
one also), we can use a vector of recursive pointers
(having a certain length), which allows (for the new
type of structure) to define an arbitrary number of
direct descendants. 72

