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Recapitulation

• It is considered the following type:
typedef struct nod

{ <statements>;
struct nod *next;

} NOD;
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Circular simple linked list
(Recapitulation)

A simple linked list contains:

first – the pointer to the node that has no predecessor;

last – the pointer to the node that has no successor.

We know that: last -> next = 0;

But if last -> next = first , then we can obtain a 
circular linked list.
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For the management of the nodes, it is 
used a global variable (denoted pcirc) that 
points to an arbitrary node of the list:

NOD *pcirc;

where NOD is the common type of the list 
nodes

(Recapitulation)
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Inserting 
before a 
node 
specified 
by a key
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Inserting 
after a 
node 
specified 
by a key
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+ Finding a node by counting!…
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Josephus problem
(variant for a program in C)

The steps of the algorithm are:

1) The numbering starts with node immediately 
following the pcirc pointer and delete the n-th
node from the list.

2) Repeat step 1, continuing with the node 
immediately following the deleted one, until 
the list is reduced to a single node.
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Doubly linked list
• A doubly-linked list is a linked data 

structure that consists of a set of 
sequentially linked nodes. Each node 
contains two fields, called links, that are 
references to the previous and to the next 
node in the sequence of nodes. The 
beginning and ending nodes' previous
and next links, respectively, point to some 
kind of terminator (typically null).
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Notes:

• It is considered the following type:
typedef struct nod

{ <statements>;
struct nod *prev;
struct nod *next;

} NOD;
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first -> prev = 0;

last -> next = 0;
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Operations related to a doubly 
linked list:
a) creation of a doubly linked list;
b) access to any node of the list;
c) inserting a node in a doubly 
linked list;
d) deleting a node from a doubly 
linked list;
e) deleting a doubly linked list.
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Creation of a doubly linked list
1. At first, the doubly linked list is empty :

first = last = 0;

2. A memory area is allocated (with malloc) in the heap 
memory for the current node.

3. Are there data to upload them in the current node p?
• NO  returns from function (after using elibnod(p));
• YES  loading node with current data (by using 

incnod(p)) and jump to step 4;
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4. If the list:
• is empty:

first = last = p;
p->prev = p->next = 0;

•is not empty:
last->next = p;
p->prev = last;
p->next = 0;
last = p;

Current node is inserted after the one pointed by last.
Afterwards last will indicate to the new node, which was 
inserted.

6) Jump to step 2.
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Access to a node of a doubly 
linked list

Usually, we prefer an access function that 
searches a node, by using a numerical key: 

typedef struct nod
{ <statements>;
type key; /* like integer */
struct nod *prev;
struct nod *next;

} NOD;
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Inserting a node in a doubly 
linked list

1. Inserting before the first node

2. Inserting before a node specified by a key

3. Inserting after a node specified by a key 

4. Inserting after the last node
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Deleting a node from a doubly 
linked list

a)deleting the first node of the doubly 
linked list;

b) deleting a specified node with a 
key;

c) deleting the last node of  the 
doubly linked list.
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The doubly linked lists have 
various applications:

• High security programs - the rapid 
restoration of missed links (without loss of 
nodes);

• Long lists, where the search can start from 
both ends;

• Banking programs, etc.
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Graph theory

Definition:

Usually a graph is a pair like:
G = <V, M>

where V is a set of vertices (or 
nodes), and M  VV is a set of 
edges (lines or links).



Examples
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• A graph may be undirected, 
meaning that there is no distinction 
between the two vertices 
associated with each edge, or its 
edges may be directed from one 
vertex to another

24
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Usually, the line from the node a
to the node b is denoted with:

- ordered pair (a, b) if the graph 
is directed;

- unordered pair {a, b} if the 
graph is undirected.



26

In practical applications we can 
find different kinds of graphs:

- directed,

- undirected,

- mixed.
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A path (route) is a sequence of edges of 
the following forms : 

- (a1, a2), (a2, a3), (a3, a4), ... , (an-1, an) if 
the graph is directed

- {a1, a2}, {a2, a3}, {a3, a4}, ... , {an-1, an} if 
the graph is undirected
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Definitions
• The length of a path = the number of edges.

• A simple path = a path in which the peaks are 
not repeated.

• Cycle = is a simple path except the first and last 
peak, which are the same.

• Directed acyclic graph = is a directed graph with 
no directed cycles.
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We call a subgraph G’ (of the graph G):

G’ = <V’, M’>

where V’ V, and M’  M (the vertices 
are a subset of the vertex set of G, and 
the edges are a subset of the initial 
edge set).
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A partial graph G" spans a initial graph 
G, and usually it has the same vertex 
set, but a diminished number of edges.

G’’ = <V, M’’>

M’’  M (but G” has the same vertex 
set V).
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Connectivity
• If it is possible to establish a path from any 

vertex to any other vertex of a graph, the 
graph is said to be connected; otherwise, 
the graph is disconnected. 

• A graph is totally disconnected if there is 
no path connecting any pair of vertices 
(this is just another name to describe an 
empty graph or independent set).
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Representations
Different data structures for the representation of 
graphs are used in practice:

• Adjacency list 

• Adjacency matrix

• Incidence matrix



Adjacency list 
• Vertices are stored as records or objects, 

and every vertex stores a list of adjacent 
vertices. 

• This data structure allows the storage of 
additional data on the vertices. 

• Additional data can be stored if edges are 
also stored as objects, in which case each 
vertex stores its incident edges and each 
edge stores its incident vertices.
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Adjacency matrix 
• A two-dimensional matrix, in which the 

rows represent source vertices and 
columns represent destination vertices. 

• Data on edges and vertices must be 
stored externally. 

• Only the cost for one edge can be stored 
between each pair of vertices.
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Incidence matrix 
• A two-dimensional Boolean matrix, in 

which the rows represent the vertices and 
columns represent the edges. 

• The entries indicate whether the vertex at 
a row is incident to the edge at a column.
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TREES
Tree structure

• A tree structure or tree diagram is a way of 
representing the hierarchical nature of a 
structure in a graphical form.

• It is named a "tree structure" because the 
classic representation resembles a tree, 
even though the chart is generally upside 
down compared to an actual tree, with the 
"root" at the top and the "leaves" at the 
bottom. 37
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• Definition 1: 
A tree is a directed graph, 

which has an acyclic structure 
and it is connected (from the 
root to every terminal node - or 
leaves).
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• Definition 2: 
A tree is somehow similar 

with a list, being a collection of 
recursive data structures that 
has a dynamic nature.
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• Definition 3:

By tree we understand a finite and non-empty 
group of elements called nodes:

TREE = {A1, A2, A3, ..., An}, where n> 0,

which has the following properties:
- there is only one node, which is called the root of the 
tree;
- the rest of the nodes can be grouped in subsets of 
the initial tree, which also form trees. Those trees are 
called subtrees of the root.
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Example of a tree as a particular graph
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The nodes in a tree
• Each node in a tree has zero or more child nodes, which are 

below it in the tree (trees are usually drawn growing 
downwards). 

• A node that has a child is called the child's parent node (or 
ancestor node, or superior). A node has at most one parent.

• An internal node (also known as an inner node) is any node 
of a tree that has child nodes. Similarly, a terminal node (also 
known as a leaf node) is any node that does not have child 
nodes.

• The topmost node in a tree is called the root node.
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Ordering

• An ordered tree is a rooted 
tree for which an ordering is 
specified for the children of 
each vertex (node).
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Binary tree
• A binary tree is a tree data 

structure in which each node has 
at most two children, which are 
referred to as the left child and 
the right child.

• There are maximum two disjoint 
groups for every parental node 
(each one being a binary tree).  
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Notes:

• Usually, one of the groups is called the 
left subtree of the root, and the other 
one the right subtree. 

• The binary tree is ordered, because in 
each node, the left subtree is 
considered to precede the right 
subtree. 

• In other words, we can say that the left 
descendant is older that the right one. 
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• Sometimes, a node of a binary tree can 
have only one descendant. This can be 
the left subtree or the right subtree. 

• The two possibilities are considered 
distinct.

Notes (cont.)
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Transformation
• A binary tree it cannot be defined as a 

particular case of an ordered tree. Usually, 
a classic tree is never empty, while a 
binary tree can be empty, sometimes. 

• Any ordered tree can be always 
represented through a binary tree.
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Conversion of an classic ordered 
tree in a binary tree

1. Firstly, we have to link, between them, all 
brothers descendants of the same parent 
node and suppress the links with the parent, 
except the first son.

2. Then, the former prime son node (the older 
one) becomes the left son of the parent, and 
the other former brothers become (in a 
sequentially way) the roots of the right 
subtrees. Each of the brothers becomes 
downward the right son of its former big 
brother.  



Try to turn this tree into a binary tree
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Using structures for building a 
binary tree

The node of a binary tree can be represented as another 
structural data type, called NOD, which is defined as follows:

typedef struct node
{

<statements>
struct node * left;
struct node * right;

} NOD;

where:
• left - is the pointer to the left son of the current node;
• right - is the pointer to the right son of the same node.
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In applications with binary trees we 
can define several operations such as:

1. Inserting a leaf node in a binary tree;

2. Access to a node of a tree;

3. Traversal the tree;

4. Delete a tree.
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• The operations of insertion and 
access to a node are based on a 
criteria that defines the place in the 
tree where the node in question can 
be inserted or found (according with 
the current operation which is 
involved). 

• This criterion is dependent on the 
specific problem where the binary 
tree concept is applied. 


