
Data Structures and
Algorithms (DSA)

Course 8
Lists / Graph Theory /

Trees
Iulian Năstac

2

Recapitulation

• It is considered the following type:
typedef struct nod

{ <statements>;
struct nod *next;

} NOD;

3

Circular simple linked list
(Recapitulation)

A simple linked list contains:

first – the pointer to the node that has no predecessor;

last – the pointer to the node that has no successor.

We know that: last -> next = 0;

But if last -> next = first , then we can obtain a
circular linked list.

4

For the management of the nodes, it is
used a global variable (denoted pcirc) that
points to an arbitrary node of the list:

NOD *pcirc;

where NOD is the common type of the list
nodes

(Recapitulation)

5

6

Inserting
before a
node
specified
by a key

7

Inserting
after a
node
specified
by a key

8

+ Finding a node by counting!…

9

Josephus problem
(variant for a program in C)

The steps of the algorithm are:

1) The numbering starts with node immediately
following the pcirc pointer and delete the n-th
node from the list.

2) Repeat step 1, continuing with the node
immediately following the deleted one, until
the list is reduced to a single node.

10

Doubly linked list
• A doubly-linked list is a linked data

structure that consists of a set of
sequentially linked nodes. Each node
contains two fields, called links, that are
references to the previous and to the next
node in the sequence of nodes. The
beginning and ending nodes' previous
and next links, respectively, point to some
kind of terminator (typically null).

11

Notes:

• It is considered the following type:
typedef struct nod

{ <statements>;
struct nod *prev;
struct nod *next;

} NOD;

12

<- last

DATA

next

DATA

next

DATA

first

0 next

0

next

prev

first ->

next

prev

next

prev

0next

prev

last ->

13

first -> prev = 0;

last -> next = 0;

14

Operations related to a doubly
linked list:
a) creation of a doubly linked list;
b) access to any node of the list;
c) inserting a node in a doubly
linked list;
d) deleting a node from a doubly
linked list;
e) deleting a doubly linked list.

15

Creation of a doubly linked list
1. At first, the doubly linked list is empty :

first = last = 0;

2. A memory area is allocated (with malloc) in the heap
memory for the current node.

3. Are there data to upload them in the current node p?
• NO returns from function (after using elibnod(p));
• YES loading node with current data (by using

incnod(p)) and jump to step 4;

16

4. If the list:
• is empty:

first = last = p;
p->prev = p->next = 0;

•is not empty:
last->next = p;
p->prev = last;
p->next = 0;
last = p;

Current node is inserted after the one pointed by last.
Afterwards last will indicate to the new node, which was
inserted.

6) Jump to step 2.

17

0
next

prev
first ->

next

prev

next

prev

0next

prev
last ->

← p
prev

next

last->next = p;
p->prev = last;
p->next = 0;
last = p;

Adding a new node

18

Access to a node of a doubly
linked list

Usually, we prefer an access function that
searches a node, by using a numerical key:

typedef struct nod
{ <statements>;
type key; /* like integer */
struct nod *prev;
struct nod *next;

} NOD;

19

Inserting a node in a doubly
linked list

1. Inserting before the first node

2. Inserting before a node specified by a key

3. Inserting after a node specified by a key

4. Inserting after the last node

20

Deleting a node from a doubly
linked list

a)deleting the first node of the doubly
linked list;

b) deleting a specified node with a
key;

c) deleting the last node of the
doubly linked list.

21

The doubly linked lists have
various applications:

• High security programs - the rapid
restoration of missed links (without loss of
nodes);

• Long lists, where the search can start from
both ends;

• Banking programs, etc.

22

Graph theory

Definition:

Usually a graph is a pair like:
G = <V, M>

where V is a set of vertices (or
nodes), and M VV is a set of
edges (lines or links).

Examples

23

• A graph may be undirected,
meaning that there is no distinction
between the two vertices
associated with each edge, or its
edges may be directed from one
vertex to another

24

25

Usually, the line from the node a
to the node b is denoted with:

- ordered pair (a, b) if the graph
is directed;

- unordered pair {a, b} if the
graph is undirected.

26

In practical applications we can
find different kinds of graphs:

- directed,

- undirected,

- mixed.

27

28

A path (route) is a sequence of edges of
the following forms :

- (a1, a2), (a2, a3), (a3, a4), ... , (an-1, an) if
the graph is directed

- {a1, a2}, {a2, a3}, {a3, a4}, ... , {an-1, an} if
the graph is undirected

29

Definitions
• The length of a path = the number of edges.

• A simple path = a path in which the peaks are
not repeated.

• Cycle = is a simple path except the first and last
peak, which are the same.

• Directed acyclic graph = is a directed graph with
no directed cycles.

30

We call a subgraph G’ (of the graph G):

G’ = <V’, M’>

where V’ V, and M’ M (the vertices
are a subset of the vertex set of G, and
the edges are a subset of the initial
edge set).

31

A partial graph G" spans a initial graph
G, and usually it has the same vertex
set, but a diminished number of edges.

G’’ = <V, M’’>

M’’ M (but G” has the same vertex
set V).

32

Connectivity
• If it is possible to establish a path from any

vertex to any other vertex of a graph, the
graph is said to be connected; otherwise,
the graph is disconnected.

• A graph is totally disconnected if there is
no path connecting any pair of vertices
(this is just another name to describe an
empty graph or independent set).

33

Representations
Different data structures for the representation of
graphs are used in practice:

• Adjacency list

• Adjacency matrix

• Incidence matrix

Adjacency list
• Vertices are stored as records or objects,

and every vertex stores a list of adjacent
vertices.

• This data structure allows the storage of
additional data on the vertices.

• Additional data can be stored if edges are
also stored as objects, in which case each
vertex stores its incident edges and each
edge stores its incident vertices.

34

Adjacency matrix
• A two-dimensional matrix, in which the

rows represent source vertices and
columns represent destination vertices.

• Data on edges and vertices must be
stored externally.

• Only the cost for one edge can be stored
between each pair of vertices.

35

Incidence matrix
• A two-dimensional Boolean matrix, in

which the rows represent the vertices and
columns represent the edges.

• The entries indicate whether the vertex at
a row is incident to the edge at a column.

36

TREES
Tree structure

• A tree structure or tree diagram is a way of
representing the hierarchical nature of a
structure in a graphical form.

• It is named a "tree structure" because the
classic representation resembles a tree,
even though the chart is generally upside
down compared to an actual tree, with the
"root" at the top and the "leaves" at the
bottom. 37

38

• Definition 1:
A tree is a directed graph,

which has an acyclic structure
and it is connected (from the
root to every terminal node - or
leaves).

39

• Definition 2:
A tree is somehow similar

with a list, being a collection of
recursive data structures that
has a dynamic nature.

40

• Definition 3:

By tree we understand a finite and non-empty
group of elements called nodes:

TREE = {A1, A2, A3, ..., An}, where n> 0,

which has the following properties:
- there is only one node, which is called the root of the
tree;
- the rest of the nodes can be grouped in subsets of
the initial tree, which also form trees. Those trees are
called subtrees of the root.

41

Example of a tree as a particular graph

42

The nodes in a tree
• Each node in a tree has zero or more child nodes, which are

below it in the tree (trees are usually drawn growing
downwards).

• A node that has a child is called the child's parent node (or
ancestor node, or superior). A node has at most one parent.

• An internal node (also known as an inner node) is any node
of a tree that has child nodes. Similarly, a terminal node (also
known as a leaf node) is any node that does not have child
nodes.

• The topmost node in a tree is called the root node.

43

44

Ordering

• An ordered tree is a rooted
tree for which an ordering is
specified for the children of
each vertex (node).

45

46

Binary tree
• A binary tree is a tree data

structure in which each node has
at most two children, which are
referred to as the left child and
the right child.

• There are maximum two disjoint
groups for every parental node
(each one being a binary tree).

47

Notes:

• Usually, one of the groups is called the
left subtree of the root, and the other
one the right subtree.

• The binary tree is ordered, because in
each node, the left subtree is
considered to precede the right
subtree.

• In other words, we can say that the left
descendant is older that the right one.

48

• Sometimes, a node of a binary tree can
have only one descendant. This can be
the left subtree or the right subtree.

• The two possibilities are considered
distinct.

Notes (cont.)

49

Transformation
• A binary tree it cannot be defined as a

particular case of an ordered tree. Usually,
a classic tree is never empty, while a
binary tree can be empty, sometimes.

• Any ordered tree can be always
represented through a binary tree.

50

Conversion of an classic ordered
tree in a binary tree

1. Firstly, we have to link, between them, all
brothers descendants of the same parent
node and suppress the links with the parent,
except the first son.

2. Then, the former prime son node (the older
one) becomes the left son of the parent, and
the other former brothers become (in a
sequentially way) the roots of the right
subtrees. Each of the brothers becomes
downward the right son of its former big
brother.

Try to turn this tree into a binary tree

51

52

Using structures for building a
binary tree

The node of a binary tree can be represented as another
structural data type, called NOD, which is defined as follows:

typedef struct node
{

<statements>
struct node * left;
struct node * right;

} NOD;

where:
• left - is the pointer to the left son of the current node;
• right - is the pointer to the right son of the same node.

53

In applications with binary trees we
can define several operations such as:

1. Inserting a leaf node in a binary tree;

2. Access to a node of a tree;

3. Traversal the tree;

4. Delete a tree.

54

• The operations of insertion and
access to a node are based on a
criteria that defines the place in the
tree where the node in question can
be inserted or found (according with
the current operation which is
involved).

• This criterion is dependent on the
specific problem where the binary
tree concept is applied.

