
Data Structures and
Algorithms (DSA)

Course 7
Special Lists

Iulian Năstac

2

Recapitulation
Operations related to a linked list:

a) creation of a linked list;
b) access to any node of the list;
c) inserting a node in a linked list;
d) deleting a node from a linked list;
e) deleting a linked list.

3

<- last

DATA

next

DATA

next

DATA

first

0 next

next

prev

first ->

next

prev

next

prev

next

prev

last ->

4

STACK
(Recapitulation)

• A stack could be a simple chained list,
which is managed according to the LIFO
principle (Last In First Out).

• According to this principle, the last node in
the stack is the first one taken out. The
stack, as a basic list, has two parts (to be
indicated by two pointers):

• the base of the stack
• the top of the stack

5

On a stack we can define only three
operations:

1. inserting an element in a stack (on its
top) - PUSH

2. removing an element from a stack (the
last element that was previously added) -
POP

3. deleting a stack (CLEAR)

6

<- last (stack base)

DATA

next

DATA

next

DATA

0 next

<- first (top of the stack)

PUSH (insertion before the first
node)

7

<- last

DATA

next

DATA

next

DATA

0 next

<- first

DATA <- p

next

…
p->next = first;
first=p;
….

POP (deleting the first node of
the simple linked list)

8
<- last

DATA

next

DATA

next

DATA

0 next

<- first

...

p = first;
first = p -> next;

elibnod(p);
…

9

Queue (Recapitulation)
• A queue is a collection of nodes (that are kept in

order) and the principal (or only) operations on
this collection are the addition of entities to the
rear terminal position, known as enqueue, and
removal of entities from the front terminal
position, known as dequeue. This makes the
queue a First-In-First-Out (FIFO) data
structure.

• A simple linked list can be managed according
to the FIFO principle. The edges of the simple
linked list are the front (for dequeue) and the
back (for enqueue).

10

11

On a queue we can define only two
operations:

a. inserting an element in a queue (at its
back) - ENQUEUE;

b. extracting an element from a queue
(from its front) - DEQUEUE;

12

13

14

Circular simple linked list
A simple linked list contains:

first – the pointer to the node that has no predecessor;

last – the pointer to the node that has no successor.

We know that: last -> next = 0;

But if last -> next = first , then we can obtain a
circular linked list.

15

Remarks:
• In a circular list all the nodes are

equivalent.

• Each node has a successor and
predecessor.

• In such a list we do not have ends;
therefore the edges variables (first and
last) are not necessary.

16

For the management of the nodes, it is
used a global variable (denoted pcirc) that
points to an arbitrary node of the list:

NOD *pcirc;

where NOD is the common type of the list
nodes.

17

18

DATA
next

DATA
next

DATA
≠ 0 next

<-pcirc

19

The circular lists have various applications:

• operations with integers having a large
number of digits;

• polynomial operations with one or more
variables;

• dynamic memory allocation.

20

Notes 1:

• The functions for dynamic allocation (malloc and
free) use a memory called heap, which is
somehow organized as a circular list.

• When we use the function malloc, the circular list
nodes is searched until it finds a continuous
memory with the size at least equal to that required
by the function call. If the obtained free zone is
large, it is divided and the unused part is chained
with the other blocks of the circular list.

21

Notes 2:

• The free function frees a memory zone that is
then inserted in such circular list.

• Use free function to release a memory as soon
as you no longer need the data in it.

22

Operations related to a circular
linked list:

1) creation of a circular linked list;
2) access to a node of the list;
3) inserting a node in a circular
linked list;
4) deleting a node from a circular
linked list;
5) deleting a circular linked list.

23

Creation of a circular linked list
We can use the functions for dynamic allocation, such as:

incnod and elibnod.

Required steps are as follows:

1) At first, the circular list is empty (pcirc = 0).

2) A memory area is allocated (with malloc) in the heap
memory for the current node.

3) Are there data to upload them in the current node p?
• NO returns from function (after using elibnod(p));
• YES loading node with current data (by using incnod(p))

and jump to step 4;

24

4) If the list:
• is empty:

pcirc = p;
pcirc -> next = p;

• is not empty :
p -> next = pcirc -> next;
pcirc -> next = p;

Current node is inserted after the one pointed by pcirc.

5) pcirc will indicate to the new node, which was
inserted

pcirc = p;

6) Jump to step 2.

25

Access to a node of a circular
linked list

We define an access function that
searches a node, by using a numerical
key, and returns one of the following
values:

• a pointer to the searched node;

• 0 if there is no such a node.

26

We consider the following structure type:

typedef struct nod
{ <statements>;
type key; /* like integer */
struct nod *next;

} NOD;

27

A possible solution:
NOD * access (int c)
/ * Search a node with a key that is similar with function parameter c.
- Returns the pointer to that node, or 0 if there is no such node * /
{ extern NOD *pcirc;

NOD * p;
p = pcirc;
if (p == 0) return 0; /* Empty list */
do

{
if (p-> key == c) return p;
p = p->next;

} while (p! = pcirc);
return 0;

}

+ Access to a node by counting!
…

28

29

Inserting a node in a circular
linked list

Cases (for which we will present the
corresponding flow charts):

1. Inserting before a node specified by a
key

2. Inserting after a node specified by a key

insertion before a node
specified by a key

30

DATA

next

DATA

next

DATA

<- q1

<- q (with key)

<- p
next

…
p->next=q;
q1->next=p;
…

31

Inserting
before a
node
specified
by a key

insertion after a node specified
by a key

32

DATA

next

DATA

next

DATA

<- q (with key)

<- p
next

…
p->next=q->next;
q->next=p;
…

33

Inserting
after a
node
specified
by a key

34

+ Inserting a node by counting!
…

35

Deleting a node from a circular
linked list

For a function that deletes, from a circular
list, a node specified by a key, we can agree
about the following procedures:

• if pcirc indicates to the node that has to be
deleted, then, after deleting, pcirc will point
to the previous node.

• if the list is empty, then pcirc = 0.

deleting a specified node with a key

36

DATA

next

DATA

next

<- q1

<- q (the node with the
discovered key)

...

q1 ->next = q -> next;

elibnod(q);
…

37

Notes:

• The erase function is similar to
NOD *ins_b(int c)

• Deleting a node can be done by specifying
its position to a landmark (which we will
denote by rep).

38

typedef struct person
{

char *soldier_name;
struct person *next;

}SOLDIER;

39

Example:

• The eliminating function will delete the n-th
node from the circular linked list (indicated
by the rep pointer). The numbering will start
from rep. The function will return the new
rep pointer, which indicates the precedent
node to the eliminated one.

• The rep pointer (landmark) is similar to
pcirc.

40

SOLDIER *eliminating (SOLDIER *rep, int n)
{

SOLDIER *q,*p;
int k=1;

if(rep==0)
return(0); /* the case when the list is already empty */

…

41

…
if(rep != rep->next) /*the list has at least two nodes */
{

p=rep;
while(k<=n)

{
q=p;
p=p->next;
k++;
}

q->next = p->next;
elibnod(p);
rep=q;

}
…

42

…
else /* the case when the list had had a single node */

{
elibnod(rep);
rep=0;

}

return(rep);
}

43

Deleting a circular linked list
void erase_circular_list()
{

extern NOD *pcirc;
NOD *p,*p1;
if ((p=pcirc)==0) return; /* the list is already empty*/
do

{
p1 = p;
p = p->next;
elibnod(p1);

} while (p != pcirc);
pcirc = 0;

}

44

Josephus problem
(variant for a program in C)

A besieged city is defended by a number
of knights (soldiers). The soldiers had decided
to choose one of them to go for help. Soldiers
are arranged in a circle (as in a circular list).
The knights have to choose a number n, then
starting from one of them start numbering and
will successively eliminate each the n-th
soldier, till the list will finally remain with only
one soldier, which will be sent into the mission.

45

The steps of the algorithm are:

1) The numbering starts with node
immediately following the pcirc pointer
and delete the n-th node from the list .

2) Repeat step 1, continuing with the node
immediately following the deleted one,
until the list is reduced to a single node.

46

The program solves the following
requirements:
• it creates a circular list indicated by

the pcirc pointer;
• reads a number indicated in the

problem statement;
• eliminates nodes according to steps 1

and 2;
• shows the word from the remaining

node in the list.

