
Data Structures and
Algorithms (DSA)

Course 6
Lists (Recapitulation)

Iulian Năstac

2

Recapitulation
Operations related to a linked list:

a) creation of a linked list;
b) access to any node of the list;
c) inserting a node in a linked list;
d) deleting a node from a linked list;
e) deleting a linked list.

3

<- last

DATA

next

DATA

next

DATA

first

0 next

0
next

prev

first ->

next

prev

next

prev

0next

prev

last ->

4

The simple linked list
(recapitulation)

Between the nodes of the simple linked list we have only
one order relation. There is a single node that doesn't
have a successor and a single node that doesn't have a
predecessor.

These nodes are the edges of the list.

We will use two pointers to the front and back edges of
the list, which we’ll denote with:

• first – the pointer to the node that has no predecessor;
• last – the pointer to the node that has no successor.

5

The next pointer defines
the successor relation for
the list’s nodes. This is a
pointer for connexion. At
each node, it has as
value the address of the
next node from the list.
An exception is the
linked pointer from the
last node (for which next
takes the value zero).

6

Notes:

• It is considered the following type:
typedef struct nod

{ <statements>;
struct nod *next;

} NOD;

• A special function (called incnod) is used, which
loads the current data in a node of NOD type.

7

• The incnod function returns:
• 1 to mark correct loading of data in the current

node
• -1 when data are not loaded
• 0 when an error occurs (eg insufficient memory)

• The prototype of incnod function is:
int incnod(NOD *p);

• Another required function releases the
memory area reserved for a specified
node:

void elibnod(NOD *p);

8

2.2. The access to a node in a simple
linked list (Recapitulation)

• We can have access to the nodes of a simple linked list,
starting with the first node, and then by passing from a
node to another one, using the next pointer.

• A better method is to have a key date, (a component of
the nodes) that should have different values, for each
node. In this case it can be defined an access to the lists'
node based on the value of this key (usually with the
char or int type). The function returns the pointer to the
identified node or zero, if there is no match to the key.

9

Example:
• It is considered the following user type:

typedef struct nod
{ char *word; /*this is the key */
int frequency;
struct nod *urm;

} NOD;

• Using a simple linked list (where nodes are of the NOD
type), we have to write a function that can identify, in the
respective list, the node for which the pointer word has
as value the address of a given string.

• This pointer plays the key role and it is requested to be
found the node that points to a given word.

10

NOD *search(char *c)
/* searches for a node in the list, which has a
similar word with the argument of the function */
{
extern NOD *first;
NOD * p;
for (p = first; p; p = p->next)

if (strcmp(p-> word, c) == 0)
return p; /*It was found a node with a c key */

return 0; /* There is no node in the list of key c */
}

11

2.3. Inserting a node in a simple linked list
In a simple linked list it can be done insertions of
nodes in different positions, such as:

a) insertion before the first node;

b) insertion before a node specified by a key;

c) insertion after a node specified by a key;

d) insertion after the last node of the list.

insertion before the first node

12

<- last

DATA

next

DATA

next

DATA

0 next

<- first

DATA <- p

next

…
p->next = first;
first=p;
….

insertion before a node
specified by a key

13

DATA

next

DATA

next

DATA

<- q1

<- q (with key)

<- p
next

…
p->next=q;
q1->next=p;
…

insertion after a node specified
by a key

14

DATA

next

DATA

next

DATA

<- q (with key)

<- p
next

…
p->next=q->next;
q->next=p;
…

insertion after the last node of
the list

15

<- last

DATA

next

DATA

next

DATA

0 next

<- first

DATA <- p

next

…
last->next = p;
last=p;

last->next=0;
….

16

Example:
• insertion after the last node of the list

NOD *add()
/* - Adds a node to a simple linked list;
- Returns the pointer to this node, or zero if it isn't added.
*/
{
extern NOD *first, *last;
NOD * p;
int n;
/* a memory area is allocated for this node, which is then
filled with data */
n = sizeof(NOD);
…

17

…

if (((p = (NOD *)malloc(n)) != 0) && (incnod(p) == 1))
{
if (first == 0) /* list is empty */
first = last = p;
else

{
last->next = p; /* p becomes the last node */
last = p;

}
p->next = 0; /* similar with last->next=0; */

return p;
}

18

…

if (p == 0) /*it wasn’t enough memory*/
{
printf ("Insufficient memory \n");
getch(); /* pause for visualization */
exit(1);
}
elibnod(p);
return 0;
}

19

Supplement:

int incnod(NOD *p)
/* load current data in the node that is pointed by p */
{
if((p -> word = citcuv()) == 0) return -1;
p -> frequency = 1;
return 1;
}

20

char *citcuv()
/* - Reads a word and keeps it in the heap memory;
- Returns the pointer to that word or zero in the case of EOF */
{
int c, i;
char t[255];
char * p;

/* skip over characters that are not letters */
while ((c = getchar ()) <'A' || (c> 'Z' && c <'a') || c> 'z')

if (c == EOF)
return 0; /* EOF case */

…

21

…

/* read a word and keep it in the vector t */
i = 0;
do
{
t [i ++] = c;
} while (((c = getchar()) >= 'A' && c <= 'Z' || c >= 'a') && c <= 'z');

if (c == EOF)
return 0;

t[i++] = '\0';

…

22

…

/* the word is saved in the heap memory */

if ((p = (char *) malloc(i)) == 0)
{
printf("Insufficient memory \n");
getch(); /* pause for visualization */
exit (1);
}

strcpy (p, t);
return p;
}

Warning! - Here p is not a pointer to the NOD type, but to a
string of characters

23

Supplement:

void elibnod(NOD *p)
/* Release the heap memory areas allocated
by a pointer type node p */
{
free(p->word);
free(p);

}

24

2.4. Deleting a node from a simple linked list

There are considered the following cases:

a) deleting the first node of the simple linked list;

b) deleting a specified node with a key;

c) deleting the last node of the simple linked list.

25

Notes:

• The deleting task uses a function called
elibnod.

• This function releases the memory zone
assigned to the node that is deleted.

• The codes of the incnod and elibnod
functions depend of the application in
which are used.

deleting the first node of the
simple linked list

26
<- last

DATA

next

DATA

next

DATA

0 next

<- first

...

p = first;
first = p -> next;

elibnod(p);
…

deleting a specified node with a key

27

DATA

next

DATA

next

<- q1

<- q (the node with the
discovered key)

...

q1 ->next = q -> next;

elibnod(q);
…

deleting the last node of the
simple linked list

28

<- first

...

q1->next = 0;
last = q1;

elibnod (q);

…

<- q =
last

DATA

next

DATA

next

DATA

next

0

DATA

next = 0

<- q1

29

Example: deleting the first node of the simple linked list

void erase_first_node()

{

extern NOD *first, *last;

NOD *p;

if (first == 0) return;

p = first;

first = first -> next;

elibnod(p);

if (first == 0) /* The list is empty */

last = 0;

}

30

Example:
void erase() /* delete the last node from the list */
{
extern NOD *first, *last;
NOD *q, *q1;
q1 = 0;
q = first;
if (q == 0)

return; /* empty list */
while(q != last) /* the list is scrolled */

{
q1 = q;
q = q-> next;
}

…

31

….

if (q == first)
first = last = 0;

else
{
q1->next = 0;
last = q1;
}

elibnod (q);
}

32

Observation:

• There is a great difference in
complexity, if we compare the
function that deletes the first
node with a function that removes
the last node of the list.

33

2.5. Deleting a simple linked list

void delete_list()
{

extern NOD *first, *last;
NOD *p;
while(first)

{
p = first;
first = first -> next;
elibnod(p);

}
last = 0;

}

34

STACK
• A stack could be a simple chained list,

which is managed according to the LIFO
principle (Last In First Out).

• According to this principle, the last node in
the stack is the first one taken out. The
stack, as a basic list, has two parts (to be
indicated by two pointers):

• the base of the stack
• the top of the stack

35

36

On a stack we can define only three
operations:

1. inserting an element in a stack (on its
top) - PUSH

2. removing an element from a stack (the
last element that was previously added) -
POP

3. deleting a stack (CLEAR)

37

• The first two operations are carried out at
the top of the stack. Thus, if an element
is removed from the stack, then this
element is on the top of the stack and,
further, the previous inserted one reaches
the top of the stack.

• If an element is inserted in a stack, it will
be designate to the top of the stack.

38

To implement a stack using a simple linked list,
we must identify the base and the top of the
stack, these two becoming the two extremities
of the list. There are two possibilities:

a. The node indicated by the first variable will
be the base of the stack, and the node
indicated by the last variable will be the top
of the stack;

b. The node indicated by the first variable will
be the top of the stack, and the node
indicated by the last variable will be the
base of the stack.

39

Notes:
• In case a, the PUSH and POP functions are

identified by the add and erase_last_node
functions, defined in the LIST laboratory. But,
while the add function is an efficient one, the
erase_last_node function isn’t efficient.

• In case b, the PUSH and POP functions are
identified by the inifirst and erase_first_node
functions (to be defined in this lesson). In this
case, both functions are efficient. Thus, it is
recommended to implement the stack using a
simple chained list, according to case b.

40

<- last (stack base)

DATA

next

DATA

next

DATA

0 next

<- first (top of the stack)

Example of PUSH (case b)

TNOD *inifirst() /* - PUSH - insert the current
node before the first node of the list */
{
extern NOD *first, *last;
NOD *p;
int n;

n = sizeof(NOD);
… 41

42

…

if(((p = (NOD *)malloc(n)) != 0) && (incnod(p) == 1))
{
if(first == 0)
{
first = last = p;
p -> next = 0;
}
else
{
p -> next = first;
first = p;
}
return p;
}

…

43

…
if(p == 0)
{
printf("insufficient memory\n");
getch(); /* pause for visualization */
exit(1);

}
elibnod(p);
return 0;

} /* end inifirst */

44

Particular case:
The problem with trains (from the third Laboratory)

typedef struct tnod
{
long cvag; /* Code of the wagon */
long cmarfa; /* Commodity code */
int exp; /* sender */
int dest; /* recipient */
struct tnod *next;

} TNOD;

45

int incnod(TNOD *p)
/* upload a node with data about the associated wagon */
{
char t[255];
char er[] = "EOF was typed in bad position\n";
long cod;
int icod;

/* read code of the wagon */
for(; ;)

{
printf("\nCode of the wagon: ");
if(gets(t) == 0)

return -1; /* no data */
if(sscanf(t, "%ld", &cod) == 1 && cod >= 0 && cod <= 999999999)

break;
printf("Error for wagon code\n");

}
p -> cvag = cod;

…

46

…
/* read code of the goods */
for(; ;)

{
printf("Code of the goods: ");
if(gets(t) == 0)

{
printf(er);
return 0;

}
if(sscanf(t, "%ld", &cod) == 1 && cod >= 0 && cod <= 999999999)

break;
printf("Error for code of the goods\n");

}
p -> cmarfa = cod;

/* read sender code */
…
/* read recipient code */

…
return 1;
} /* End incnod */

47

void elibnod(NOD *p)
/* erase the node pointed by p */
{

free(p);
} /* End elibnod */

48

Example of POP (case b)
void erase_first_node() /* POP - delete the first node */
{
extern TNOD *first, *last;
TNOD *p;

if(first == 0)
return;

p = first;
first = first -> next;
elibnod(p);
if(first == 0)

last = 0;
} /* End erase_first_node */

Note:

49

In some cases a stack can be implemented using an array of
pointers (which we call it: tpnod).

Considering:
tpnod[0] - bottom of the stack
tpnod[v] - top of the stack

where:
int v; /* is a global variable that can have the maximum value: MAX */

You can define two functions on this stack:
empty() - returns 1 if the stack is empty and 0 otherwise
full() - returns 1 if the stack is full and 0 otherwise

50

Therefore we can use the type:

typedef enum {false, true} Boolean;

…

Boolean empty()
{
extern int v;
return (v == 0);

}
…

Boolean full()
{
extern int v;
return (v >= MAX);

}

51

Queue
• A queue is a collection of nodes (that are kept in

order) and the principal (or only) operations on
this collection are the addition of entities to the
rear terminal position, known as enqueue, and
removal of entities from the front terminal
position, known as dequeue. This makes the
queue a First-In-First-Out (FIFO) data
structure.

• A simple linked list can be managed according
to the FIFO principle. The edges of the simple
linked list are the front (for dequeue) and the
back (for enqueue).

52

53

On a queue we can define only two
operations:

a. inserting an element in a queue (at its
back) - ENQUEUE;

b. extracting an element from a queue
(from its front) - DEQUEUE;

54

55

56

Circular simple linked list
A simple linked list contains:

first – the pointer to the node that has no predecessor;

last – the pointer to the node that has no successor.

We know that: last -> next = 0;

But if last -> next = first , then we can obtain a
circular linked list.

57

DATA
next

DATA
next

DATA
≠ 0 next

<-pcirc

