
Data Structures and
Algorithms (DSA)

Course 5
Lists

Iulian Năstac

2

Cap. Lists
(recapitulation)
1. Introduction

• Linked lists are the best and simplest
example of a dynamic data structure that
uses pointers for theirs implementation.

• Understanding pointers is crucial to think
how linked lists work.

• Essentially, linked lists function as an
array that can grow and shrink as needed,
from any point in the array.

3

A group of dynamic recursive
structures of the same type, which
includes one or more relationships
for linking elements (using pointers
from these structures), is called a
linked list.

Recapitulation

4

• The elements of a list are called nods. If
between the nods of a lists is only one order
relation, then the list is called simple linked.

• Similarly, the list is double linked if in between
the nods are defined two relations for order.

• A list is n-chained if, between every two
successive nodes, there are defined n relations
for order.

Recapitulation

5

Recapitulation
Operations related to a linked list:

a) creation of a linked list;
b) access to any node of the list;
c) inserting a node in a linked list;
d) deleting a node from a linked list;
e) deleting a linked list.

6

2. The simple linked list
(recapitulation)

Between the nodes of the simple linked list we have only
one order relation. There is a single node that doesn't
have a successor and a single node that doesn't have a
predecessor.

These nodes are the edges of the list.

We will use two pointers to the front and back edges of
the list, which we’ll denote with:

• first – the pointer to the node that has no predecessor;
• last – the pointer to the node that has no successor.

7

The next pointer defines
the successor relation for
the list’s nodes. This is a
pointer for connexion. At
each node, it has as
value the address of the
next node from the list.
An exception is the
linked pointer from the
last node (for which next
takes the value zero).

8

2.1. Creating a simple linked list
(recapitulation)

When a simple linked list is built, we are doing the
following tasks:

a) initialize both pointers first and last with zero
value, because at the beginning the list is empty

b) allocate the memory zone in the heap memory for
the current node p

c) load the current node p with the correspondent
data (if it exists), and then go to the next step d).
Otherwise eliminates p and returns from the
function.

9

d) assign the addresses of the list, for the
current node:
last -> next = p, if the list is not empty;
first = last = p, if the list is empty.

e) the current node is assigned with the
pointer that denotes the last element of the list
(last=p)

f) last -> next = 0

g) the process jumps to point b) in order to
add a new node to the list.

10

Notes:

• It is considered the following type:
typedef struct nod

{ <statements>;
struct nod *next;

} NOD;

• A special function (called incnod) is used, which
loads the current data in a node of NOD type.

11

• The incnod function returns:
• 1 to mark correct loading of data in the current

node
• -1 when data are not loaded
• 0 when an error occurs (eg insufficient memory)

• The prototype of incnod function is:
int incnod(NOD *p);

• Another required function releases the
memory area reserved for a specified
node:

void elibnod(NOD *p);

12

2.2. The access to a node in a simple
linked list

• We can have access to the nodes of a simple linked list,
starting with the first node, and then by passing from a
node to another one, using the next pointer.

• A better method is to have a key date, (a component of
the nodes) that should have different values, for each
node. In this case it can be defined an access to the lists'
node based on the value of this key (usually with the
char or int type). The function returns the pointer to the
identified node or zero, if there is no match to the key.

13

• Usually a key variable is inserted into the
user type:

typedef struct nod
{ <statements>;
type key;
struct nod *urm;

} NOD;

• The key can be int, long, double, char, etc.

14

Example:
• It is consider the following user type:

typedef struct nod
{ char *word; /*this is the key */
int frequency;
struct nod *urm;

} NOD;

• Considering a simple linked list (where nodes are of the
TNOD type), we have to write a function that can
identify, in the respective list, the node for which the
pointer word has as value the address of a given string.

• In other words, this pointer plays the key role and it is
requested to be found the node that points to a given
word.

15

NOD *search(char *c)
/* searches for a node in the list, which has a
similar word with the argument of the function */
{
extern NOD *first;
NOD * p;
for (p = first; p; p = p->next)

if (strcmp(p-> word, c) == 0)
return p; /*It was found a node with a c key */

return 0; /* There is no node in the list of key c */
}

16

2.3. Inserting a node in a simple linked list
In a simple linked list can be done insertions of
nodes in different positions:

a) insertion before the first node;

b) insertion before a node specified by a key;

c) insertion after a node specified by a key;

d) insertion after the last node of the list.

17

Example:
• insertion after the last node of the list

NOD *add()
/* - Adds a node to a simple linked list;
- Returns the pointer to this node or zero if it isn't added.
*/
{
extern NOD *first, *last;
NOD * p;
int n;
/* a memory area is reserved for this node, which is then
filled with data */
n = sizeof(NOD);
…

18

…

if (((p = (NOD *)malloc (n)) != 0) && (incnod(p) == 1))
{
if (first == 0) /* list is empty */
first = last = p;
else

{
last->next = p; /* p becomes the last node */
last = p;

}
p->next = 0;
return p;
}

…

19

…

if (p == 0) /*it wasn’t enough memory*/
{
printf ("Insufficient memory \n");
exit(1);
}
elibnod(p);
return 0;
}

20

2.4. Deleting a node from a simple linked list

There are considered the following cases:

a) deleting the first node of the simple linked list;

b) deleting a specified node with a key;

c) deleting the last node of the simple linked list.

21

Notes:

• The deleting task uses a function called
elibnod.

• This function releases the memory zone
assigned to the node that is deleted.

• The codes of the incnod and elibnod
functions depend of the application in
which are used.

22

Example: deleting the first node of the simple linked list

void erase_first_node()

{

extern NOD *first, *last;

NOD *p;

if (first == 0) return;

p = first;

first = first -> next;

elibnod(p);

if (first == 0) /* The list is empty */

last = 0;

}

23

Observation:

• There is a great difference in
complexity, if we compare the
function that deletes the first
node with a function that removes
the last node of the list.

24

2.5. Deleting a simple linked list

void delete_list()
{

extern NOD *first, *last;
NOD *p;
while(first)

{
p = first;
first = first -> next;
elibnod(p);

}
last = 0;

}

25

STACK
• A stack could be a simple chained list,

which is managed according to the LIFO
principle (Last In First Out).

• According to this principle, the last node in
the stack is the first one taken out. The
stack, as a basic list, has two parts (to be
indicated by two pointers):

• the base of the stack
• the top of the stack

26

27

On a stack we can define only three
operations:

1. inserting an element in a stack (on its
top) - PUSH

2. removing an element from a stack (the
last element that was previously added) -
POP

3. deleting a stack (CLEAR)

28

• The first two operations are carried out at
the top of the stack. Thus, if an element
is removed from the stack, then this
element is on the top of the stack and,
further, the previous inserted one reaches
the top of the stack.

• If an element is inserted in a stack, it will
be designate to the top of the stack.

29

To implement a stack using a simple linked list,
we must identify the base and the top of the
stack (these two becoming the two extremities
of the list). There are two possibilities:

a. The node indicated by the first variable will
be the base of the stack, and the node
indicated by the last variable will be the top
of the stack;

b. The node indicated by the first variable will
be the top of the stack, and the node
indicated by the last variable will be the
base of the stack.

30

Notes:
• In case a, the PUSH and POP functions are

identified by the add and erase_last_node
functions, defined in the LIST laboratory. But,
while the add function is an efficient one, the
erase_last_node function isn’t efficient.

• In case b, the PUSH and POP functions are
identified by the inifirst and erase_first_node
functions (to be defined in this lesson). In this
case, both functions are efficient. Thus, it is
recommended to implement the stack using a
simple chained list, according to case b.

