
Data Structures and 
Algorithms (DSA)

Course 4

Iulian Năstac



2

10. Functions for dynamic 
memory allocation

(recapitulation)
• Dynamic allocation is a specific characteristic 

allowed by some computing languages, in 
which a program can obtain memory at runtime.

• There are two ways that memory gets allocated 
for data storage: 
– Compile Time (or static) Allocation

• Memory for named variables is allocated by the compiler
• Exact size and type of storage must be known at compile time

– Dynamic Memory Allocation
• dynamically allocated space usually placed in a program segment 

known as the heap or the free store
• pointers are crucial for dynamic allocation



3

(recapitulation)

• The area of memory used for dynamic allocation 
is obtained from the heap memory area.

• C dynamic memory allocation refers to performing 
manual memory management for dynamic 
memory allocation in the C programming 
language via a group of functions in the C 
standard library, namely malloc, realloc, calloc 
and free.

• The main functions for dynamic allocation in C are 
malloc and free (which can be found in the
header files, like alloc.h or malloc.h - depending 
on the compiler).



4

11. Incorrect use of pointers
(recapitulation)

• Often the errors provided by pointers are very difficult 
to detect. 

• The incorrect uses of pointers usually consist in 
reading or writing in an unknown area of memory.

• Major drawback is that the effects of these mistakes 
are only visible during program execution, and not 
during compilation. 

• Finding the faults is often a difficult task for 
programmers, especially when for some applications 
them are not directly (or immediately) visible.



5

Cap. Structures
(recapitulation)

1. Defining the concept of structure
• C programming language can process single or 

grouped variables, which enable global processing. 

• An example of the second category is the matrix, 
which is in fact an ordered set of data of the same 
type (the order of the elements is realized by indices).

• However, often it is useful to group the data other than 
the one used for matrices. This time the data are not 
necessarily of the same type and requires a global 
processing. This form of group is called structure. 



6

Reference to elements of such groups 
didn't use indices but a special way that 
include the name of structure. Components 
of the groups can be groups themselves. 
Furthermore, it is possible to define a 
hierarchy of groups.

Thus:
- The group that is not part of another 
group is of the highest level;
- Data that didn't include other groups of 
data are basic (or elementary) data.



7

As a very general definition, we can say 
that the data grouped according to a 
hierarchy are called structures.

Notes:
• Basic data of a structure can be isolated 

(single) or matrices;
Each structure represents a new type of 
data, defined by the user.



8

2. Declaration of structure

The general syntax for a struct declaration in C is:

struct tag_name 
{ type member1; 
type member2; 

…
} identification_1, identification_2, …, 

identification_n;

Here tag_name or identification_i are optional in 
some contexts. 



9

Thus:
• if identification _1, identification _2, …, 

identification_n are absent, then tag_name 
should be present.

• if tag_name is absent, then at least identification 
1 should be present.



10

Notes:

• A variable of the structure type can be declared 
subsequently.
struct tag_name identification _1, …, identification_n;

• A statement of a specific structure 
identification_i (where i = 1…n) may be 
replaced by a k-dimensional array of elements 
of tag_name type:

identification_i[lim1][lim2]...[limk]



11

Examples:
1) The following three code examples will have the same result:

struct calendar_data
{int day;
char month[11];
int year;
} birth_date, employment_date;

or
struct 
{int day;
char month[11];
int year;
} birth_date, employment_date;

or
struct calendar_data
{int day;
char month[11];
int year;
};
...

struct calendar_data birth_date, employment_date;



12

2) Structure containing personal information : 

struct personal_data
{ char name[100];
char address[1000];
struct calendar_data birth_date, employment_date;
char gender;

};

.............

struct personal_data manager, employees[1000];

The variable named manager  is a structure of  personal_data 
type, and employees[1000] is an array of structures.



13

3) Define complex numbers A, B and C.
struct COMPLEX

{double real;
double imag;
}A, B, C;

4) The position of a point on the screen is given by two 
coordinates: 

struct punct
{ int x;
int y;
};
...

struct punct poz;



14

3. Access to the elements of a structure

The access to the elements of a structure can be 
done in one of the following two ways:

• struct_name.date_name
• pointer -> date_name

where: struct_name is the name of structure;
date_name is the name of a specific 

component of the structure;
pointer is a pointer to that structure.



15

Examples:
1) struct calendar_data

{int day;
char month[11];
int year;
} dc,d[10];

...
dc.day=1;
dc.year=2015;
strcpy(dc.month,”March”);
...
d[3].day=dc.day;
d[3].year=dc.year;
strcpy(d[3].month,dc.month);
...



16

2) Function that calculates and returns the modulus
of the complex number z.

double modulus(COMPLEX *z)
{
return sqrt(z->x * z->x + z->y * z->y);
}

It should be noted that the  components of an 
structure can be initialized.



17

4. Typedef declarations
• By declaring a structure, we introduce a new type.
• In general, a name can be assigned to a type, 

whether it is a predefined type or one defined by 
the programmer. This should be done by using the 
following syntax:

typedef type new_type_name;

where
• type is a predefined type or one previously defined 

by the programmer;
• new_type_name is the name allocated to the new 

type.



18

Examples:
1) By using the statement

typedef double REAL;
the data

REAL x,y;
Are of the double type.

2) Declaring COMPLEX type.

typedef struct
{ double real;
double imag;

} COMPLEX;
...

We can then declare complex numbers:

COMPLEX z, tz[10];



19

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<conio.h>
typedef struct {

double x;
double y;
} COMPLEX;

void sum_c(COMPLEX *a, COMPLEX *b, COMPLEX *c);

int main()
{
COMPLEX a,b,c;
printf("\n\n Enter the real and the imaginary part ");
printf("\n of the first complex number :\n");
if(scanf("%lf %lf",&a.x,&a.y)!=2)

{
printf("\nError");
exit(1);

}
….



20

…
printf("a = %g + i*(%g)\n",a.x,a.y);
printf("\n\n Enter the real and the imaginary part ");
printf("\n of the second complex number :\n");
if(scanf("%lf %lf",&b.x,&b.y)!=2)

{
printf("\nError");
exit(1);

}
printf("b = %g + i*(%g)\n",b.x,b.y);
sum_c(&a,&b,&c);
printf("\na+b = %g + i*(%g)",c.x, c.y);

getch();
}

void sum_c(COMPLEX *a, COMPLEX *b, COMPLEX *c)
{
c->x = a->x + b->x;
c->y = a->y + b->y;

}



21

5. Unions
Introduction

Usually, in C  a memory area is assigned 
according to the type of variable. Its allocated 
memory can keep only the data of the 
mentioned type.

For example:
double x;

For x is allocated 8 bytes (64 bits) in the 
computer memory in order to store a real 
number.



What is an union in C?
• Unions in C are related to structures and are defined as 

objects that may hold (at different times) objects of 
different types and sizes. 

• They are analogous to variant records in other 
programming languages. Unlike structures, the 
components of a union all refer to the same location in 
the memory. 

• In this way, a union can be used at various times to hold 
different types of objects, without the need to create a 
separate object for each new type. 

• The size of a union is equal to the size of its largest 
component type.

22



Definition
• A union is a special data type available in C 

that enables you to store different data types 
in the same memory location. 

• Notes:
– You can define a union with many members, but 

only one member can contain a value at any 
given time. 

– Unions provide an efficient way of using the 
same memory location for multi-purpose tasks of 
different variables (but not in the same time).

23



24

Examples:
1) union a

{int x;    /* 2 bytes for x */
long y;  /* 4 bytes for y */
double r; /* 8 bytes for r*/
char c;  /* 1 byte for c */
} var;

In the above statement var is a union of the type a. Accessing 
variables can be done with: var.x; or var.y; or var.r; or var.c;
but in different locations of the program (and not at the same 
time).

For var it is allocated a memory area which is sufficient to 
keep the maximum number of bytes (8 bytes in this example). 
If would be replaced union with struct, then it will be 
necessary 15 bytes.



25

2) 
struct data

{ int timp;
union { int i;

float f;
double d;

} zc;
} util;

We can access:

util.zc.i=123;

As observed, in contrast to the structure, a union 
can not be initialized.



26

6. Bit fields
• C also provides a special type of structure member 

known as a bit field, which is an integer with an 
explicitly specified number of bits. 

• A bit field is declared as a structure member of type 
int, signed int, unsigned int, or boolean, following 
the member name, a colon (:) and the number of 
bits that it should occupy. 

• The total number of bits in a single field must not 
exceed the total number of bits from its declared 
type.



27

Basically, more fields can be grouped to 
form a structure:

struct identification
{ field_1;

field_2;
...
field_n;

} name_1, name_2, ..., name_n;



28

Syntax of bit field:

type name_field: length_in_bits;

or:

type : length_in_bits;

where type can be int, signed int, 
unsigned int, or boolean.



29

Notes:
• As a special exception to the usual C syntax rules, 

it is implementation-defined whether a bit field 
declared as type int, without specifying signed or 
unsigned, is signed or unsigned. Thus, it is 
recommended to explicitly specify signed or 
unsigned on all structure members for portability.

• Unnamed fields consisting of just a colon followed 
by a number of bits are also allowed; these 
indicate padding. Specifying a width of zero for an 
unnamed field is used to force alignment to a new 
word.



30

Example:

struct
{ unsigned a:2;
int b:2;
unsigned :3;
unsigned c:2;
unsigned :0;
int d:5;
unsigned e:5;
}x,y;



31

For x, two words are allocated in the following 
way:



32

Notes:

• The members of bit fields do not have 
addresses, and as such cannot be used with 
the address-of (&) unary operator. 

• The sizeof operator may not be applied to bit 
fields.



33

7. Enumerated type
• In C, enumerations are created by explicit 

definitions, which use the enum keyword and are 
reminiscent of struct and union definitions.

• Enumerated type allows the programmer to use 
meaningful names for numeric values.

• For example, the name of the month of the year, 
January can be associated with the value of 1, 
February associated with value 2, etc.

• Enumeration type is used when it is not desired to 
see successive integers, but the some symbols 
associated  with these numbers.



34

The general format of enumeration type is :

enum name{nume_0,nume_1,nume_2,...,nume_k} v1,v2,...,vn;

where:
• name is the name of the enumeration type introduced by this 

statement;
• nume_0, ..., nume_k are names that will be used instead of 

numerical values (nume_i has value i);
• v1, v2, ..., vn are data, which are stated with the name type  

(are similar to int type).

As observation, data can be later defined as name type:

enum name v1,v2,...,vn;



35

Examples:

1) 
enum {ilegal, jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec} month;

In this case, the assignment
month = 4;

is equivalent with the more suggestive format
month = apr; 

and month == 8

is equivalent with 
month == aug



36

2) enum Boolean {false,true} a;
The expression

a==false
is equivalent with 

a==0
and

a==true
is equivalent with 

a==1

3) enum S{s1, s2, s3=100, s4, s5};
Associated values are: s1=0; s2=1; s3=100; s4=101; 
s5=102.



37

8. Recursively defined data

• Recursively defined data refers to data 
structures that are declared in a special format, 
which contains a form of recursivity. 

• More specifically, a recursive data type is a 
data type for values that may contain other 
values of the same type (which refers to 
itself).



• To clarify things, we can consider the 
structure:

struct name
{ 
statements;
};

38



39

Notes:

• The statements should include various 
data types (predefined or user) but 
different from name type.  

• But the statements could define pointers of 
the name type (in the case of recursively 
defined data).



40

Consequently, the following statement
struct name

{statements;
struct name *name1;
statements;
};

is correct, while:
struct name 

{statements;
struct name name1;
statements;
};

is incorrect.



41

Definition

If a user type has at least one 
component that is a pointer to 
itself, then it is a recursive 
type.



42

Example:

typedef struct node
{ char *word;

int frequency;
struct node *next;

} NOD;



Notes :
• An important application of recursion in 

computer science is in defining dynamic 
data structures such as Lists and Trees. 

• Recursive data structures can dynamically 
grow to a theoretically infinite size in 
response to runtime requirements. 

• In contrast, a static array's size 
requirements must be set at compile time.

43



44

Cap. Lists
1. Introduction

• Linked lists are the best and simplest 
example of a dynamic data structure that 
uses pointers for theirs implementation. 

• Understanding pointers is crucial to 
understanding how linked lists work. 

• Essentially, linked lists function as an 
array that can grow and shrink as needed, 
from any point in the array.



Definition

• As a first definition, a list is a dynamic 
group, meaning that it has a variable 
number of elements.

• At the beginning, a list is an empty group. 
During the program execution, we can add 
new items to the list and also various 
elements can be removed from the list.

45



• Essentially, linked lists function as an 
array that can grow and shrink as needed, 
from any point in the array.

• Advantages of dynamic lists over arrays:
– Items can be added or removed from any 

position on the list
– There is no need to define an initial size

46



But linked lists also have a few 
disadvantages:
• There is no "random" access - it is impossible to reach 

the n-th item in the array without first iterating over all 
items up until that item. This means we have to start 
from the beginning of the list and count how many times 
we advance in the list until we get to the desired item.

• Dynamic memory allocation and pointers are required, 
which complicates the code and increases the risk of 
memory leaks and segment faults.

• Linked lists need a much larger space over arrays, since 
linked list items are dynamically allocated (which is less 
efficient in memory usage) and each item in the list also 
must store an additional pointer.

47



What is a linked list?
• A linked list is a set of dynamically allocated 

nodes, arranged in such a way that each node 
contains one value and (at least) one pointer. 
The pointer always indicates to the next member 
of the list. If the pointer is NULL, then there is 
the last node in the list.

• A linked list is held using a local pointer variable 
which points to the first item of the list. If that 
pointer is also NULL, then the list is considered 
to be empty. 48



49



50

• The ordering of the elements of a list is 
done using pointers to the list elements 
(each such pointer is a part of the node 
structure).

• Due to these pointers, list items are 
recursive structures.

• Lists organized in this way are called linked 
list.



51

Another definition (more comprehensive): 

A group of dynamic recursive structures 
of the same type, which includes one or 
more relationships for linking elements 
(using pointers from these structures), is 
called a linked list.



52

• The elements of a list are called nods. If 
between the nods of a lists is only one order 
relation, then the list is called simple linked. 

• Similarly, the list is double linked if in between 
the nods are defined two order relations.

• A list is n-chained if between every two 
successive nodes there are defined n relations 
for order .



53

Operations related to a linked list:

a) creation of a linked list;

b) access to any node of the list;

c) inserting a node in a linked list;

d) deleting a node from a linked list;

e) deleting a linked list.



54

2. The simple linked list

Between the nodes of the simple linked list we have only 
one order relation. There is a single node that doesn't 
have a successor and a single node that doesn't have a 
predecessor.

These nodes are the edges of the list.   

We will use two pointers to the front and back edges of 
the list, which we’ll denote with:

• first – the pointer to the node that has no predecessor;
• last – the pointer to the node that has no successor.



55

The next pointer defines 
the successor relation for 
the list’s nodes. This is a 
pointer for connexion. At 
each node, it has as 
value the address of the 
next node from the list. 
An exception is the 
linked pointer from the 
last node (for which next
takes the value zero).



56

2.1. Creating a simple linked list
When a simple linked list is built, we are doing 
the following tasks:

a)  initialize both pointers first and last with  
zero value, because at the beginning the list is 
empty

b) allocate the memory zone in the heap 
memory for the current node p

c) load the current node p with the 
correspondent data (if  it exists), and then go 
to the next step d). Otherwise eliminates p and 
returns from the function.



57

d) assign the addresses of the list, for the 
current node:
last -> next = p, if the list is not empty;
first = last = p, if the list is empty.

e) the current node is assigned with the 
pointer that denotes the last element of the list 
(last=p)

f) last -> next = 0

g) the process jumps to point b) in order to 
add a new node to the list.



58

Notes:

• It is considered the following type:
typedef struct node

{ <statements>;
struct node *next;

} NOD;

• A special function (called incnod) is used, which 
loads the current data in a node of NOD type.



As an example, let's define a 
linked list node:

typedef struct node 
{ int val; 

struct node * next; 
} NOD;

59



60

• The incnod function returns:
• 1 to mark correct loading of data in the current 

node
• -1 when data are not loaded
• 0 when an error occurs (eg insufficient memory)

• The prototype of incnod function is:
int incnod(NOD *p);

• Another required function releases the 
memory area reserved for a specified 
node:

void elibnod(NOD *p);



61

2.2. The access to a node in a simple 
linked list

• We can have access to the nodes of a simple linked list, 
starting with the first node, and then by passing from a 
node to another one, using the next pointer.

• A better method is to have a key date, (a component of 
the nodes) that should have different values, for each 
node. In this case it can be defined an access to the lists' 
node based on the value of this key (usually with the 
char or int type). The function returns the pointer to the 
identified node or zero, if there is no match to the key.


