
Data Structures and
Algorithms (DSA)

Course 3

Iulian Năstac

2

Recapitulation

Having the matrix :

int mat[lim_1][lim_2][lim_3]...[lim_n];

then the element mat[i_1][i_2]...[i_n] is equivalent to:

*(mat + i_1ꞏlim_2ꞏlim_3ꞏ...ꞏlim_n +
i_2ꞏlim_3ꞏlim_4ꞏ...ꞏlim_n + ... + i_(n-1)ꞏlim_n +
i_n)

3

Pointers (recapitulation)

• A pointer is a variable that contains an
address in the computer memory,
wherein it is stored the value of another
variable.

Note: Harold Lawson is credited with the 1964 invention of the pointer.

4

2. Declaring pointers
(recapitulation)

The declaration of a pointer type variable shall
conform to the following format :

type *name_pointer;

As long as the declaration of a ordinary variable is
type name, we can say that the form type * from a
pointer statement is in fact a new kind of type (pointer
type).

5

3. Operators for pointers
(recapitulation)

There are different operations that can be executed with
pointers, but there are two special operators which are used
in unary expressions like:

operator pointer

These two operators are:
• indirection operator (*) → it operates on a pointer variable,

and returns an l-value equivalent to the value at the pointer
address.

• reference operator (&) → acts on an lvalue and the result is
a pointer.

6

4. Expressions with pointers(recap.)
4.1. Assignment instructions for pointers

A pointer can be assigned with:
• a memory address (usually obtained with &);
• another pointer.

As observation, the format specifier used in
output functions (such as printf) to display
the value of a pointer is %p.

7

4.2. The arithmetic of pointers
(recapitulation)

• Arithmetic operations that can be performed
using pointers are: addition (+) and subtraction
(-), and supplementary, the incrementation (++)
and decrementation (- -).

• It should be noted that the pointer arithmetic
is relative to their base type.

8

4.3. Using a pointer with several
types of data (recapitulation)

• There are cases where the same pointer
can be used for multiple data types in the
same program, but not simultaneously.
This can be done by initially declaring the
void type for the pointer:

void *name;

9

The Rule of Implicit conversion
It works when a binary operator is applied to two operands.

The steps of the rule :
• First convert the operands of type char and enum to the

type int;
• If the current operator is applied to operands of the same

type then the result will be the same type. If the result is
a value outside the limits of the type, then the result is
wrong (exceedances occur).

• If the binary operator is applied to operands of different
types, then a conversion is necessary, as in the following
cases:

10

– If one operand is long double, therefore the other one is
converted to long double and long double is the result type.

– Otherwise, if one operand is double, therefore the other one is
converted to double and double is the result type.

– Otherwise, if one operand is float, therefore the other one is
converted to float and float is the result type.

– Otherwise, if one operand is unsigned long, therefore the other
one is converted to unsigned long and unsigned long is the
result type.

– Otherwise, if one operand is long, therefore the other one is
converted to long and long is the result type.

– Otherwise, if one operand is unsigned, therefore the other one
is converted to unsigned and unsigned is the result type.

11

4.4. Comparing the pointers
(recapitulation)

• We can compare two pointers in a relational
expression.

• This comparison is however justified only if the
two pointers indicate to the elements from the
same array (matrix).

• Otherwise, the effect of the comparison is
irrelevant as long as the compiler places the
variables at different addresses depending on
the available memory of the computer.

12

Example:
• Generate a list headed by the LIFO

principle (LIFO – Last Input First Output).
This is a stack that will store and provide
integer values, according to the numbers
entered.

Thus, if you enter :
• A value other than 0 or -1 → it is placed at the top

of the stack;
• 0 → remove a value from the stack;
• -1 → it stops the program .

13

#include<stdio.h>
#include<stdlib.h>
#define DIMENSION 50
void push(int i);
int pop(void);
int *b, *p, stack[DIMENSION];

int main()
{ int value;

b=stack; /* b shows the base of the stack */
p=stack; /* initializes p */
do
{printf(“\n Enter the value :”);
scanf(“%d”, &value);
if(value!=0) push(value) ;
else printf(“\n The value from the top is %d\n”, pop());

}while(value ! = -1) ;
}

14

void push(int i)
{

p++;
if(p==(b+ DIMENSION)) /* or >= */

{ printf(“\n Stack is
overloaded”);

exit (1);
}

*p = i;
}

int pop(void)
{ if(p==b) /* or <= */

{printf(“\n Stack is empty”);
exit(1) ;
}

p - - ;
return *(p+1) ;

}

15

5. Pointers and matrices
• The relationship between pointers and

arrays has been widely discussed in the
previous chapter (Matrices). C language
provides two ways to access the elements
of a matrix:
– the arithmetic of pointers (the fastest way);
– array indices (slower, but close to the

mathematical formalism).

16

Remember from previous course

Having the matrix :

int mat[lim_1][lim_2][lim_3]...[lim_n];

then the element mat[i_1][i_2]...[i_n] is equivalent to:

*(mat + i_1ꞏlim_2ꞏlim_3ꞏ...ꞏlim_n +
i_2ꞏlim_3ꞏlim_4ꞏ...ꞏlim_n + ... + i_(n-1)ꞏlim_n +
i_n)

17

Examples:
1) In a program that contains the code:

…
char stg[100], *p;
p=stg;
…

there are similar (or equivalent) expressions of
the type stg[4] and/or *(p+4)

Since the speed is a criterion in programming,
many programmers experienced in C / C ++
usually use the pointers in order to access the
array elements.

18

2) Two versions of a function that displays
a string:
void write_string(char s[])
{ register int t;

for(t=0; s[t]; t++) putchar(s[t]) ;
}
or:
void write_string(char *s)
{ while(*s) putchar(*s++);
}

19

5.1. Matrices of pointers
Pointers can be organized in a matrix like any other
data type.

Examples:
1) In a program containing matrix

int *x[10];
by using the declaration:

x[2]=&var;
the address of the variable var is assigned to the
third element of the array of pointers.
By using

*x[2]
we obtain the value of var.

20

2) Arrays of pointers can be used as function
argument:

void display_matrix(int *q[])
{ int t;

for(t=0; t<10; t++)
printf(”%d”, *q[t]) ;

}
In this example, q is not a pointer to a variable
of type integer, but a vector of integer pointers.
Therefore it was used *q[] in the argument of
the function (to avoid any confusion).

21

3) Arrays of pointers are often used to store
pointers to the strings, as in the following
example:
void error_display (int num)
{ static char *err[] = { ” Unable to open file”,

” Read error”,
” Writing error”,
………

};
printf(” %s”, err[num]) ;

}
The matrix err keeps pointers to each error
message.

22

6. Multiple indirection (pointers to pointers)
• Since a pointer is itself a numeric variable, it is stored in the

computer's memory at a particular address. Therefore, one can
create a pointer to a pointer, a variable whose value is the address
of a pointer.

Multiple indirection can be continued as long as desired (but
more than a pointer to another pointer is rarely necessary).

23

Notes:

1) Multiple indirection must be carefully used
because excessive indirection is confusing
and a source of conceptual errors.
2) Multiple indirection must not be confused
with high-level data structures such as chained
lists, which contain pointers. The two concepts
differ fundamentally.

A variable that is a pointer to another pointer is
declared:

type **name ;

24

Example:
include<stdio.h>
int main()

{ int x, *p, **q;
...
x=10;
p=&x;
q=&p;
printf(” %d”, **q); /* displays the value of x */
...

}

25

7. Initialize the pointers

• Once we declare a pointer, if it is not
initialized, it contains an unknown value.

• A convention (in C / C ++) states that a
pointer which is not initialized, has a
formal null value (zero). However the fact
that a pointer is null (formally), doesn't
make it trusty ... up to its initialization.

26

Example:
A program that displays a string in both directions
#include<stdio.h>
#include<string.h>

char *p= ”C Programming Language”;
int main()

{ register int t;
printf(”%s”, p); /* prints the string in a straightforward way */
…

for(t=strlen(p)-1; t>=0; t - -) /*inversely displayed the string*/
printf(”%c”, p[t]); /* virtually the same as

putchar(p[t])*/
...

}

27

Attention:
• To remember the specific functions for

strings, we recommend to see the lecture
notes in Computer Programming from:

http://www.euroqual.pub.ro/cursuri/programarea-
calculatoarelor/

28

8. Pointers to functions
• Using pointers to functions is an important feature of

the C language, but when is used incorrectly it
generates confusion.

• When a program runs, the code for each function is
loaded into memory starting at a specific address. A
pointer to a function holds the starting address of a
function (its entry point).

• The general form of the declaration is as follows:
type (*ptr_to_func)(parameter_list);

29

#include<stdio.h>
#include<string.h>

void search(char *a, char *b, int (*comp)(const char *, const char *));

int main()
{ char s1[80], s2[80];

int (*p)(const char *, const char *);
p=strcmp;
.....
gets(s1);
gets(s2);
search(s1,s2,p);
….

}

void search(char *a, char *b, int (*comp)(const char *, const char *))
{ printf(“\n tests the equality \n”);

if (!(*comp)(a,b)) printf(“\n equal ”);
else printf(“\n different”);

}

30

Remark:

• There are several functions used to compare
strings. One of the most used is the strcmp
function that has the format:

int strcmp(const char *s1, const char *s2);

31

Note: having two strings: s1 and s2
(remember from previous Semester)

• s1 = s2 – if both have similar
length and s1[i] = s2[i]  i.

• s1 < s2 – if  i such that s1[i]<s2[i]
and s1[j]=s2[j]  j= 0, 1, …, i-1.

• s1 > s2 – if  i such that s1[i]>s2[i]
and s1[j]=s2[j]  j= 0, 1, …, i-1.

32

We can think of the ordering of
words in a dictionary…

33

strcmp function
(remember from previous Semester)

int strcmp(const char *s1, const char *s2);

• This function returns:
– a negative value - if s1 < s2
– 0 - if s1 = s2
– a positive value - if s1 > s2

See also:
http://www.euroqual.pub.ro/cursuri/programarea-calculatoarelor/

34

Notes:

• In the previous example, the arguments (of the
function search(…)) consist of two pointers to
strings and a pointer to a function.

• It is noted that a pointer to a function introduce a
significant degree of confusion (sometime without
increasing the efficiency).

• The technique is still advantageous when
transmitting several functions, or when we want to
create a matrix of functions.

• For example instead of a large switch instruction
with lots of features listed inside, it can be created an
array of pointers to functions (making it easier to
select the appropriate function).

35

9. Calling through the arguments of
a function

(remember from previous semester)

• Calling a function in C can be realized
(relative to the nature of his
arguments) in two ways:

- by value;

- by reference.

36

10. Functions for dynamic
memory allocation

• Dynamic allocation is a specific characteristic
allowed by some computing languages, in
which a program can obtain memory at runtime.

• There are two ways that memory gets allocated
for data storage:
– Compile Time (or static) Allocation

• Memory for named variables is allocated by the compiler
• Exact size and type of storage must be known at compile time

– Dynamic Memory Allocation
• dynamically allocated space usually placed in a program segment

known as the heap or the free store
• pointers are crucial for dynamic allocation

37

Notes:
• The area of memory used for dynamic allocation

is obtained from the heap memory area.
• The C dynamic memory allocation refers to

performing manual memory management for
dynamic memory allocation in C programming
language via a group of functions in the C
standard library, namely malloc, realloc, calloc
and free.

• The main functions for dynamic allocation in C are
malloc and free (which can be found under
header files like alloc.h or malloc.h - depending on
the compiler).

38

malloc function allocates the specified
number of bytes from the heap memory
Syntax:

void *malloc(unsigned no_of_bytes);

• The function returns a pointer of type void, which in
fact can be assigned to any pointer.

• After a successful call, it returns a pointer to the first
byte of the memory region so allocated.

• If free memory from the heap is insufficient, there is a
blocking in this assignment and the function returns a
NULL value.

39

Examples:

1) Considering a pointer to a string :
char *p;

one can allocate for example 1000 bytes in
memory:
- in C → p=malloc(1000);
- in C++ → p=(char *)malloc(1000);

As observed in C ++, you should use a
typecast.

40

2) Allocate space for 50 integers.
int *p;
p=malloc(50*sizeof(int));

3) A correct use of malloc requires the
possibility of a lack of memory (when malloc
function returns null):

if(!(p=malloc(100)))
{printf(“Out of memory\n”);
exit(1);

}

41

free function deallocates a memory block

The released zone can be reused for a subsequent
call of malloc function.

Syntax:

void free(void *p);

where p is a pointer to previously allocated memory.

As a remark, it should be avoid the use of the free
function with an improper argument since it can
destroy the running program.

42

Example: random string generator
#include <stdio.h> /* printf, scanf, NULL */
#include <stdlib.h> /* rand */
#include <malloc.h> /* malloc, free */
int main ()
{ int i,n;
char * buffer;
printf ("How long do you want the string? ");
scanf ("%d", &i);

buffer = (char*) malloc (i+1);
if (buffer==NULL) exit (1);
for (n=0; n<i; n++)
buffer[n]=rand()%26+'a';

buffer[i]='\0';
printf ("Random string: %s\n",buffer);
free (buffer);

return 0;
}

43

11. Incorrect use of pointers
• Often the errors provided by pointers are sometimes

difficult to detect.

• The incorrect uses of pointers usually consist in
reading or writing in an unknown area of memory.

• Major drawback is that the effects of these mistakes
are only visible during program execution, and not
during compilation.

• Finding the faults is often a difficult task for
programmers, especially when, for some applications
them, are not directly (or immediately) visible.

44

Examples:

1) Using an unknown memory location.

int main()
{ int x, *p;
x=10;
p=x; / it is assigned the value of 10 to an

unknown location of memory */
...

}

This error may not be noticeable for small scale
programs.

45

2) Misunderstanding of using a pointer.

#include<stdio.h>
int main()
{ int x, *p;

x=10;
p=x; /* wrong (it should be p=&x)*/

printf(“%d”, *p); /* will not show the desired
value of 10 */

…
}

46

3) Incorrect assumptions about variables
in the memory locations.
…
char s[80], y[80];
char *p1, *p2;
p1=s;
p2=y;
if(p1 < p2) … /* irrelevant task */
…

47

4) Erroneous assumption that two arrays are
adjacent and can be indexed as one (by simply
incrementing a pointer)

…
int first[10], second[10];
int *p, t;
p=first;
for(t=0; t<20; t++) *p++ = t;

…

48

5) Omission to reset a pointer, which is allowed to cross
a large area of memory. The program displays the
associated ASCII values for characters in a string.

#include<stdio.h>
#include<string.h>
int main()
{ char *p;

char s[80];
p=s;
do{ gets(s); /* read string */

/* displays the ASCII equivalent for each character */
while(*p) printf(” %d ”, *p++);

} while(strcmp(s,”STOP”));
...
}

49

• The problem is that the pointer p is
assigned to the address of s only the first
time, therefore by successive
incrementation it passes over other data.

50

The correct version is:

#include<stdio.h>
#include<string.h>
void main(void)
{ char *p;

char s[80];
do{ p=s; /* p is reset at each new loop*/

gets(s);
while (*p) printf(” %d ”, *p++);

}while(strcmp(s,”STOP”));
}

In conclusion, attention should be paid to the code of
programs when using pointers.
It is better to anticipate the effects of their use.

51

Cap. Structures
1. Defining the concept of structure

• C programming language can process single or
grouped variables, which enable global processing.

• An example of the second category is the matrix,
which is in fact an ordered set of data of the same
type (the order of the elements is realized by indices).

• However, often it is useful to group the data other than
the one used for matrices. This time the data are not
necessarily of the same type and requires a global
processing. This form of group is called structure.

52

Reference to elements of such groups
doesn't use indices but a special way that
include the name of structure.
Components of the groups can be groups
themselves. Furthermore, it is possible to
define a hierarchy of such groups.

Thus:
- The group that is not part of another
group is of the highest level;
- Data that didn't include other groups of
data are basic (or elementary) data.

53

As a very general definition, we can say that:
the data grouped according to a hierarchy are
called structures.

Notes:
• Basic data of a structure can be isolated

(single) or matrices;
Each structure represents a new type of data,
defined by the user.

54

2. Declaration of structure

The general syntax for a struct declaration in C is:

struct tag_name
{

type member1;
type member2;
…

} identification_1, identification_2, …, identification_n;

Here tag_name or identification_i are optional in some
contexts.

55

Thus:
• if identification _1, identification _2, …,

identification_n are absent, then tag_name
should be present.

• if tag_name is absent, then at least identification
1 should be present.

56

Notes:

• A variable of the structure type can be declared
subsequently:
struct tag_name identification _1, …, identification_n;

• A statement of a specific structure
identification_i (where i = 1…n) may be
replaced by a k-dimensional array of elements
of tag_name type:

identification_i[lim1][lim2]...[limk]

57

Examples:
1) The following three code examples will have the same result:

struct calendar_data
{int day;
char month[11];
int year;
} birth_date, employment_date;

or
struct
{int day;
char month[11];
int year;
} birth_date, employment_date;

or
struct calendar_data
{int day;
char month[11];
int year;
};
...

struct calendar_data birth_date, employment_date;

58

2) Structure containing personal information :

struct personal_data
{ char name[100];
char address[1000];
struct calendar_data birth_date, employment_date;
char gender;

};

.............

struct personal_data manager, employees[1000];

The variable named manager is a structure of personal_data
type, and employees[1000] is an array of structures.

59

3) Define complex numbers A, B and C.
struct COMPLEX

{double real;
double imag;
}A, B, C;

4) The position of a point on the screen is given by two
coordinates:

struct dot
{ int x;
int y;
};
...

struct dot position;

60

3. Access to the elements of a structure

The access to the elements of a structure can
be done in one of the following two ways:

• struct_name.date_name
• pointer -> date_name

where: struct_name is the name of structure,
date_name is the name of a specific

component of the structure,
pointer is a pointer to that structure.

61

Examples:
1) struct calendar_data

{int day;
char month[11];
int year;
} dc,d[10];

...
dc.day=1;
dc.year=2015;
strcpy(dc.month,”March”);
...
d[3].day=dc.day;
d[3].year=dc.year;
strcpy(d[3].month,dc.month);
...

62

2) Function that calculates and returns the modulus
of the complex number z.

double modulus(COMPLEX *z)
{
return sqrt(z->x * z->x + z->y * z->y);
}

It should be noted that the components of an
structure can be initialized.

63

4. Typedef declarations
• By declaring a structure, we introduce a new type.
• In general, a name can be assigned to a type,

whether it is a predefined type or one defined by
the programmer. This should be done by using the
following syntax:

typedef type new_type_name;

where
• type is a predefined type or one previously defined

by the programmer;
• new_type_name is the name allocated to the new

type.

64

Examples:
1) By using the statement

typedef double REAL;
the data

REAL x,y;
are of the double type.

2) Declaring COMPLEX type.

typedef struct
{ double real;
double imag;

} COMPLEX;
...

We can then declare complex numbers:

COMPLEX z, tz[10];

65

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<conio.h>
typedef struct {

double x;
double y;
} COMPLEX;

void sum_c(COMPLEX *a, COMPLEX *b, COMPLEX *c);

int main()
{
COMPLEX a,b,c;
printf("\n\n Enter the real and the imaginary part ");
printf("\n of the first complex number :\n");
if(scanf("%lf %lf",&a.x,&a.y)!=2)

{
printf("\nError");
exit(1);

}
….

66

…
printf("a = %g + i*(%g)\n",a.x,a.y);
printf("\n\n Enter the real and the imaginary part ");
printf("\n of the second complex number :\n");
if(scanf("%lf %lf",&b.x,&b.y)!=2)

{
printf("\nError");
exit(1);

}
printf("b = %g + i*(%g)\n",b.x,b.y);
sum_c(&a,&b,&c);
printf("\na+b = %g + i*(%g)",c.x, c.y);

getch();
}

void sum_c(COMPLEX *a, COMPLEX *b, COMPLEX *c)
{
c->x = a->x + b->x;
c->y = a->y + b->y;

}

67

5. Unions
Introduction

Usually, in C a memory area is assigned
according to the type of variable. Its allocated
memory can keep only the data of the
mentioned type.

For example:
double x;

For x is allocated 8 bytes (64 bits) in the
computer memory in order to store a real
number.

What is an union in C?
• Unions in C are related to structures and are defined as

objects that may hold (at different times) objects of
different types and sizes.

• They are analogous to variant records in other
programming languages. Unlike structures, the
components of a union all refer to the same location in
memory.

• In this way, a union can be used at various times to hold
different types of objects, without the need to create a
separate object for each new type.

• The size of a union is equal to the size of its largest
component type.

68

Definition

• A union is a special data type available in
C that enables you to store different data
types in the same memory location.

• Notes:
– You can define a union with many members,

but only one member can contain a value at
any given time.

– Unions provide an efficient way of using the
same memory location for multi-purpose. 69

70

Examples:
1) union a

{int x; /* 2 bytes for x */
long y; /* 4 bytes for y */
double r; /* 8 bytes for r*/
char c; /* 1 byte for c */
} var;

In the above statement var is a union of the type a.
Accessing variables can be done with: var.x; or var.y; or
var.r; or var.c; but in different locations of the program

For var it is allocated a memory area which is sufficient to
keep the maximum number of bytes (8 bytes in this
example). If union would be replaced with struct, then 15
bytes would be required (2+4+8+1=15).

71

2)
struct data

{ int timp;
union { int i;

float f;
double d;

} zc;
} util;

We can access:

util.zc.i=123;

As observed, in contrast to the structure, a union
can not be initialized.

72

6. Bit fields
• C also provides a special type of structure member

known as a bit field, which is an integer with an
explicitly specified number of bits.

• A bit field is declared as a structure member of type
int, signed int, unsigned int, or boolean, following
the member name by a colon (:) and the number of
bits it should occupy.

• The total number of bits in a single bit field must not
exceed the total number of bits in its declared type.

73

Basically, more fields can be grouped to
form a structure:

struct identification
{ field_1;

field_2;
...
field_n;

} name_1, name_2, ..., name_n;

74

Syntax of bit field:

type name_field: length_in_bits;

or:

type : length_in_bits;

where type can be int, signed int,
unsigned int, or boolean.

75

Notes:
• As a special exception to the usual C syntax rules,

it is implementation-defined whether a bit field
declared as type int, without specifying signed or
unsigned, is signed or unsigned. Thus, it is
recommended to explicitly specify signed or
unsigned on all structure members for portability.

• Unnamed fields consisting of just a colon followed
by a number of bits are also allowed; these
indicate padding. Specifying a width of zero for an
unnamed field is used to force alignment to a new
word.

