
Data Structures and
Algorithms (DSA)

Course 2

Iulian Năstac

2

Matrices (recapitulation 1)
• Syntax:

type arrayName [lim_1] [lim_2] … [lim_n];

• where lim_i is the limit of index i (on
dimension i)

• The index i can have the following values:
0, 1, 2, … , lim_i - 1

3

Matrices (recapitulation 2)
Notes:
• Each lim_i (where i = 0, 1, 2, …, n) is a positive

integer.
• We can access the elements of a matrix by

using variables with indices.
• In C, the name of a matrix is in fact a pointer that

indicates the address of its first element.
• At the declaration of a matrix, the compiler

allows a memory zone to contiguous store all its
elements.

• Matrices and pointers are strong related.

4

Matrices (recapitulation 3)
Vectors
• How to use a vector as a parameter to a function
Examples:
a) void funct (int *x) /* pointer*/

{...........
}

b) void funct (int x[10]) /* vector with mentioned dimension */
{...........
}

c) void funct (int x[]) /* vector with unmentioned dimension */
{..........
}

5

Matrices (recapitulation 4)
Strings in C

The character string is one of the most widely used
applications that involves vectors.

Standard functions for strings
• calculating the length of strings (eg. strlen)
• copying the strings (eg. strcpy)
• concatenating the strings (eg. strcat)
• comparing the strings (eg. strcmp)
• searching (identification) of character or substrings (eg.

strchr, strstr)

6

Matrices (recapitulation 5)
Two-Dimensional Arrays

type arrayName[lim_1][lim_2]

• Two-dimensional matrices as function
parameters

void funct(int x[][10])
{

...
}

• Matrices of strings

7

Multidimensional arrays
• The C language allows the use of arrays with

more than two dimensions. Maximum size
could depend, sometimes, by the version of
the compiler.

• The general format of a multidimensional
array is:

type name[lim_1][lim_2]...[lim_n];

Example: A 4-dimensional array of
characters (with the dimension 104510)

char mat[10][4][5][10];

requires 10 x 4 x 5 x 10 = 2000 bytes.

- In addition, if the matrix uses other data
type like:

• integer – then 4000 bytes are required;
• double - then 16000 bytes are required.

8

9

Comments:
• The required memory greatly increases

according with the number of dimensions.
• By using the multidimensional matrices,

computer takes time to process the indices,
therefore the access to the matrix elements
will be slow.

• When a multidimensional array is used as a
function parameter, then we have to declare
all sizes excepting the one from extreme left.

• The variation of indices is faster for the ones
on the right side when assessing a matrix
that is stored in computer memory.

10

For example, by considering the matrix:
int mat[4][3][6][5];

Then function that receives the above
matrix as argument will be defined in the
following way:

void funct(int d[][3][6][5])
{...
}

11

Indexing pointers
• The name of an array (without mentioning any indices) is in fact a pointer to the

first element of the array.
Examples:
1) char p[10];

/* The following instructions are identical */
p; <=> &p[0];
The expression: p==&p[0] is true;

2) int *p,i[10];
p=i;
p[5]=100; <=> *(p+5)=100;
/* identical instructions that have the same result */

3) The same goes for multidimensional arrays.
int a[10][10];
a <=> &a[0][0];
a[1][2] <=> *(a+12);

12

It highlights the following set of rules :

- For a two-dimensional array :
type a[lim1][lim2];

The element: a[i][k] <=> *(a + iꞏlim2 + k)

- For a three-dimensional matrix :
type a[lim1][lim2][lim3];

The element: a[i1][i2][i3] <=> *(a+i1ꞏlim2ꞏlim3+i2ꞏlim3+i3)

- The generalization for a matrix with an arbitrary
number of dimensions is now obvious.

13

Comments:

• The pointers are often used to access the
elements of an array since the arithmetic
of the pointers is faster than the classic
access (with indices) of the matrix
elements.

• A two-dimensional array can be reduced
to a pointer to a one-dimensional array
(see/remember matrix of strings).

14

Example: A function that displays a
specified row of a matrix:

int num[10][10]; /* a global variable */
...
void display_row(int j)
{ int *p,t;
p=&num[j][0]; /* takes the address of the first

element of the row j*/
for (t=0; t<10; t++) printf(“%d”,*(p+t));

}

Observation: &num[j][0] is equivalent with num[j]

15

We improve the previous example by setting
the followings parameters: the row, its length,
and a pointer to the first element in the array

void display_row(int j, int row_length, int *p)
{ int t;

p=p+(j* row_length);
for(t=0;t< row_length; t++)

printf(“%d”,*(p+t));
}

16

Notes:
• In C, a three-dimensional matrix can be

reduced to a pointer to a two-dimensional array,
which can be further reduced to a pointer to a
one-dimensional array.

• By generalization, a n-dimensional matrix size
can be reduced to a pointer to a n-1
dimensional array. And so on, the process
continues, until it comes to an one-dimensional
array.

17

For example, by having the matrix :

int mat[lim_1][lim_2][lim_3]...[lim_n];

then the element mat[i_1][i_2]...[i_n] is equivalent
to:

*(mat + i_1ꞏlim_2ꞏlim_3ꞏ...ꞏlim_n +
i_2ꞏlim_3ꞏlim_4ꞏ...ꞏlim_n + ... + i_(n-1)ꞏlim_n +
i_n)

18

Array initialization

Any matrix can be directly initialized starting with its
declaration:

type matrix_name[lim1][lim2]...[limn]={list of values};

Note: the more to the right is an index, then it varies
much faster, when considering the appropriate matrix
elements of computer memory (this is a key issue which
concerns access by indicators).

19

Examples:

1) In the statement:
int i[10]={1,2,3,4,5,6,7,8,9,10};

i[0] has the value 1;
i[9] has the value 10.

2) Arrays of strings allow short initialization :

char matrix_name[dimension]= ”string of characters”;

20

3) The statement:
char str[14]=”C programming”;

is similar to:
char str[14]={’C’,’ ’, ‘P’,’r’,’o’,’g’,’r’,’a’,’m’,’m’,’i’,’n’,’g’,’\0’};

As a remark, do not omit the addition of '\0' to the end
of a string, when it is not used the classic initialization
for strings (with quotes).

4) A two-dimensional array initialization:
int matrix[3][2] = { 1, 1,

2, 4,
3, 5
};

21

5) It is possible to initialize arrays without
providing theirs size:

char er[]=”This message is stored in the
computer memory \n”;

22

6) Dimensionless matrix initialization is not strictly restricted
to the one-dimensional arrays. But for the multidimensional
matrices, one must specify all dimensions except the
leftmost.

For example:
int mat[][2] = { 1, 1,

2, 4,
3, 5,

};

The advantage is that it can increase or shorten the table
without changing the dimensions of the matrix (referring to
the first dimension of this example, which remains
unspecified).

23

Pointers
1. Introduction

• A pointer is a variable that contains an address in the
computer memory, where there is stored the value of
another variable.

• Consequently, pointers are used to refer to such data
which are known through their addresses.

• Harold Lawson is credited with the 1964 invention of
the pointer, for introducing this concept into PL/I, thus
providing for the first time, the capability to flexibly
treat linked lists in a general-purpose high level
language.

24

The advantages of using
pointers:
• Pointers offers the possibility to change

the arguments of a function.

• Pointers facilitates dynamic memory
allocation.

• Pointers can improve the efficiency of
certain routines.

25

2. Declaring pointers

The declaration of a pointer type variable shall
conform to the following format :

type *name_pointer;

As long as the declaration of a ordinary variable is
type name, we can say that the form type * from a
pointer statement is in fact a new kind of type
(pointer type).

26

Notes:

• The base type (type from the construction
of type*) of the pointer defines the type of
the variable that can be stored in that
memory which is addressed by the
pointer.

• The pointers' arithmetic is created relative
to theirs base type, therefore it is essential
to properly declare a pointer.

27

3. Operators for pointers
There are different operations that can be executed with
pointers, but there are two special operators which are used
in unary expressions like:

operator variable
These two operators are:
• indirection operator (*) → it operates on a pointer variable,

and returns an l-value equivalent to the value at the pointer
address.

• reference operator (&) → acts on an lvalue and the result is
a pointer.

28

Notes:

• Unary operators & and * have priority over
all arithmetic operators, except unary
minus that has the same order of
precedence.

• We must ensure that the pointer variables
used always the correct type of data.

29

The following program can be compiled without
error but does not produce the desired result

#include<stdio.h>
int main()
{ double x = 100.3, y;

int *p;
p=&x; /* forces p to point to a double */
y=*p; /* will not work as expected */

…
}

30

• In the previous example it will not be
assign the value of x to y because p is a
pointer of type integer and only two bytes
of information will be transferred to y (not
all 8 bytes which normally form a floating
point number of type double).

• Moreover, in C ++ is prohibited converting
a pointer into another one without explicit
use of a cast conversion.

31

Note:
The symbol * has in C a number of four uses,
completely different in expressions like:

• type *name – to declare a pointer.

• *name – which denote an lvalue.

• op_1 * op_2 – which expresses a multiplication.

• /* … */ – for comments.

32

4. Expressions with pointers
4.1. Assignment instructions for pointers

A pointer can be assigned with:
• a memory address (usually obtained with &);
• another pointer.

As observation, the format specifier used in
output functions (such as printf) to display
the value of a pointer is %p.

33

Example:

#include<stdio.h>
int main(int)
{ int x=100;

int *p1, *p2;
p1=&x ;
p2=p1 ;
printf(”%p”, p2) ; /* display the address of x, but not

its value*/
printf(”%d”, *p2); /* display the value of x */

}

34

4.2. The arithmetic of pointers

• Arithmetic operations that can be performed
using pointers are: addition (+) and
subtraction (-), and supplementary, the
incrementation (++) and decrementation (- -).

• It should be noted that the pointer
arithmetic is relative to their base type.

35

Examples:
1) int *p1; /* suppose p1 has a value of 2000 */

/* variables of type int needs 2 bytes */

After expression

p1++;

p1 will contain 2002 and not 2001.
And if we have the expression:

p1 - -;

and p1 with the initial value of 2000, then p1 will get 1998
after decrementation.

36

2) Concerning the placement
of a variable in memory, we
present two hypothetical cases
(and we point out that they are
not simultaneous) :

char *ch=3000;
and

int *i=3000;

The first pointer is incremented
sequentially for five times, and
the second for two times (into
an equivalent space of
memory). If we superimpose
the two hypothetical cases,
then the local memory area
would look like:

!

37

3) We are not limited (for pointers) only to
operations of incrementation or
decrementation. We can add or subtract
integers to (or from) pointers.
If p1 and p2 are pointers of the same type,
then the expression:

p1=p2+12;

makes p1 to indicate the 12th element
(ordered in memory) of the same type as the
one that p2 indicates.

38

4) Considering the code sequence:
...
int x,y;
int *p;
...

we present some equivalences:
y=x+100; p=&x;

y=*p+100;

x=y; p=&x; p=&y;
*p=y; x=*p;

x++; p=&x;
(*p)++;

39

Notes:
• The other arithmetic operators (excepting +,

++, -, şi - -) are prohibited in operations with
pointers (or memory addresses).

• You can not add or subtract variable or
constant of type float or type double from
pointers.

• The arithmetic of the pointers should not be
confused with the classic arithmetic used by
other variables (where all operations are
usually permitted, depending on the situation).

40

4.3. Using a pointer with several
types of data

• There are cases where the same pointer
can be used for multiple data types in the
same program, but not simultaneously.
This can be done by initially declaring the
void type for the pointer:

void *name;

41

...
int x;
float y;
char c;
void *p;
...
p=&x;
...
p=&y;
...
p=&c;
...

42

The pointer variable p can assign addresses in
memory areas which may contain data of
different types (int, float, char, etc.) only if using
cast conversions.

A cast conversion:

(type) operand

For the example above, the expression:
*p=10;

is not correct, while
*(int *)p=10;

is a correct one.

43

The Rule of Implicit conversion
It works when a binary operator is applied to two operands.

The steps of the rule :
• First convert the operands of type char and enum to the

type int;
• If the current operator is applied to operands of the same

type then the result will be the same type. If the result is
a value outside the limits of the type, then the result is
wrong (exceedances occur).

• If the binary operator is applied to operands of different
types, then a conversion is necessary, as in the following
cases:

44

– If one operand is long double, therefore the other one is
converted to long double and long double is the result type.

– Otherwise, if one operand is double, therefore the other one is
converted to double and double is the result type.

– Otherwise, if one operand is float, therefore the other one is
converted to float and float is the result type.

– Otherwise, if one operand is unsigned long, therefore the other
one is converted to unsigned long and unsigned long is the
result type.

– Otherwise, if one operand is long, therefore the other one is
converted to long and long is the result type.

– Otherwise, if one operand is unsigned, therefore the other one
is converted to unsigned and unsigned is the result type.

45

4.4. Comparing the pointers

• We can compare two pointers in a relational
expression.

• But… in which situation??

Note: At different runs of the same program, the
compiler can place the variables used (in a new
configuration) at memory-swapped locations

When it is justified to
compare the pointers?

• This comparison is however justified only if
the two pointers indicate to the elements
from the same array (matrix).

• Otherwise, the effect of the comparison is
irrelevant as long as the compiler places
the variables at different addresses
depending on the available memory of the
computer.

46

47

Example:
• Generate a list headed by the LIFO

principle (LIFO – Last Input First Output).
This is a stack that will store and provide
integer values, according to the numbers
entered. Thus, if you enter :

• A value other than 0 or -1 → it is placed at the top
of the stack;

• 0 → remove a value from the stack;
• -1 → it stops the program .

48

#include<stdio.h>
#include<stdlib.h>
#define DIMENSION 50
void push(int i);
int pop(void);
int *b, *p, stack[DIMENSION];
int main()
{ int value;

b=stack; /* b shows the base of the stack */
p=stack; /* initializes p */
do
{printf(“\n Enter the value :”);
scanf(“%d”, &value);
if(value!=0) push(value) ;

else printf(“\n The value from the top is %d\n”,
pop());

}while(value ! = -1) ;
}

49

void push(int i)
{

p++;
if(p==(b+ DIMENSION))

{printf(“\n Stack is
overloaded”);

exit (1);
}

*p = i;
}

int pop(void)
{ if(p==b)

{printf(“\n Stack is empty”);
exit(1) ;
}

p - - ;
return *(p+1) ;

}

