
Computers
Programming

Course 11
Iulian Năstac

2

Recap from previous course
Cap. Matrices (Arrays)

• Matrix representation is a method used by a
computer language to store matrices of different
dimension in memory.

• In C programming language, a matrix is a
collection of variables (of the same type) that
can be called with the same name.

• C programming language uses "Row Major“
schema, which stores all the elements for a
given row contiguously in memory.

3

Recap from previous course
Declaring Arrays

• Syntax:
type arrayName [lim_1] [lim_2] … [lim_n];

• where lim_i is the limit of index i (on
dimension i)

• The index i can have the following values:
0, 1, 2, … , lim_i - 1

4

Recap from previous course
One-dimensional matrices

(vectors)

• The vectors are one-dimensional arrays.

• Syntax:
type name_vect [lim];

5

Recap from previous course
The relationship between pointers

and vectors
• The name of an array is a pointer because it

holds the value the address of its first element.
However there is a difference between an array
name and a pointer type variable. Thus, a
pointer type variables can be assigned values at
runtime, while it is not possible to make the
same for an array/vector (the name of a
vector/array always represents the address of its
first element).

• It is customary to say that the name of an array
is a constant pointer.

6

Recap from previous course
How to use a vector as a
parameter to a function

• as a pointer

• as a vector with unmentioned dimension

• as a vector with mentioned dimension

7

Recap from previous course
const modifier

• A variable can be transformed into a constant
value (that cannot be modified).

• Usually a constant is defined using
define

• But const modifier can also transform a variable
into a constant.

8

Recap from previous course
Strings in C

• The character string is one of the most
widely used applications that involves
vectors.

• A string in C is an array of char values
terminated by a special null character
value '\0'.

9

Example: a statically declared
string that is initialized to "hi":

char str[3];

str[0] = 'h';

str[1] = 'i';

str[2] = '\0';

printf("\n %s \n", str);

10

Main properties of strings:
1. A string is stored in a memory organized as a vector of char type.
2. Each character is kept on different byte (through its successive

code number).
3. The most commonly used code for this purpose is ASCII.
4. After the last character of the string there must be added the null

character, which is '\0'.
5. Since there is null in final position, then we have to declare the

character array with one more character than the effective number
of characters.

6. Although C does not have explicit data string, it allows constant
string. A string constant is a list of characters enclosed in quotation
marks (eg "hello").

7. Often it is not necessary to be entered manually the null character
at the end of the string (the compiler does automatically). This
happens when using special functions to operate strings (like
gets()).

8. To operate a string you can use:
– The name of the array (the constant pointer to the string respectively);
– A simple pointer to that string.

11

Example
If we declare:

char tab[] =”This is a string”;

then:
tab – is the address of first char `T`
tab+1 – is the address of second char `h`
tab+2 – is the address of third char `i`
…
etc.
or:
tab[0] → contains the ASCII of first char `T`
tab[1] → contains the ASCII of second char `h`
…
A similar effect we can obtain by using:

char const *p = ”This is a string”;
where
p[0] or *p - contains the ASCII of first char `T`
p[1] or *(p+1) - contains the ASCII of second char `h`
…

12

Recap from previous course
Standard functions for strings

• C provides a library for strings (string.h).

• C string library functions do not allocate
space for the strings they manipulate, nor
do they check that you pass in valid strings;
it is up to your program to allocate space
for the strings that the C string library will
use.

• Calling string library functions with bad
address values will cause a fault or
"strange" memory access errors.

13

Some of the functions in the
Standard C string library

• calculating the length of strings (eg
strlen)

• copying the strings (eg strcpy)
• concatenating the strings (eg strcat)
• comparing the strings (eg strcmp)
• searching (identification) of character

or substrings (eg strchr, strstr)

14

1. Computing the string length

• The length of a string is the number of the own
characters which fall within its composition.

• NULL character is not considered in
determining the length of a string.

• NULL's presence is necessary because in
determining the length of a string are counted
all characters until its occurrence (but without
NULL).

15

Syntax:

unsigned strlen(const char * s);

16

Examples:
1) char * const p = ”This is a string”;

unsigned n;
...
n=strlen (p);

/* n will be assigned with the value 16 */

2) char tab [] = ”This is a string”;
int n;
n = strlen(tab);

/* n will be assigned with the value 16 */

3) int n;
n = strlen(”This is a string”);

/* n will be assigned with the value 16 */

17

Notes:

• All three examples had identical results.

• The strlen function formal parameter is a
constant pointer.

• Consequently, strlen function must not
modify the characters string which is of a
determined length.

18

2. Copying the strings
• Sometimes it is necessary to copy a string of character from a

memory area in another part. For this we use the strcpy
function, which has the syntax:

char * strcpy (char * dest, const char* source);

• The function makes a copy of the string pointed by the source
to the memory area whose address is indicated by dest.

• The function copies all the characters, including the null one,
from the end of the string.

• The function returns the address of dest.

19

Examples
1) char tab[] = “This string is copied”;

char t [(sizeof tab)+1];
…
strcpy (t, tab);

2) char t [100];
strcpy (t, “This string is copied”);

3) char * p=“This string is copied”;
char t [100];
char * q;
q=strcpy(t, p);

20

Variants of copy function
• In order to copy only first n characters of a string from one area

to another zone of memory, we can use the function:

char *strncpy (char *dest , const char * source , unsigned n);

• If n string length - then all characters of the string are
transferred to the dest;

• If n < length of the string - then copy only the first n characters
of the string.

21

Example 1

char * p = “This string is partially copied”;
char t[12];
strncpy (t, p, (sizeof t)-1);

22

Example 2

• Write a program that reads a sequence of
words, and finally displays only the longest
word.

23

#include<stdio.h>
#include<string.h>
#define MAX 100 /* it is assumed that a word has no more than
100 characters*/
int main()
{
int max=0, i;
char word[MAX+1];
char word _max[MAX+1];
while (scanf(“%100s”, word)!=EOF)

if (max < (i = strlen(word)))
{ max= i;

strcpy (word _max, word);
}

if (max) printf(“The longest word is %s and its length is %d \n”,
word _max, max);

getch();
}

24

3. Concatenating the strings

• For concatenating strings we can use strcat
function.

• Syntax:

char *strcat(char *dest, const char *source);

25

Notes:
• strcat function copies the string from the source

area to memory zone, immediately following the
last character of the string, which was already on
dest.

• The function returns a pointer to dest.
• It is assumed that the area pointed by dest is

large enough to keep all characters from these
two strings which are concatenated plus the
NULL character.

• strcat function does not modify the string
pointed to by the source (which is a constant
pointer).

26

Example

…
char tab1[100] = “The language C++”;
char tab2[] = “is a superset of C”;

…

strcat(tab1, “ “);
strcat(tab1, tab2);

27

Variant of strcat function

char *strncat (char *dest, const char *source, unsigned n);

• If n length of source - then all characters of the
source string are concatenated after dest;

• If n < length of source - then only the first n
characters of the source string are concatenated
after dest.

28

4. Comparing the strings
• Strings of characters can be compared

using the ASCII characters in their
structure.

• To better understand this mechanism we
consider two strings: s1 and s2.

• We have the following cases:

29

two strings: s1 and s2

• s1 = s2 – if both have similar
length and s1[i] = s2[i] i.

• s1 < s2 – if i such that s1[i]<s2[i]
and s1[j]=s2[j] j= 0, 1, …, i-1.

• s1 > s2 – if i such that s1[i]>s2[i]
and s1[j]=s2[j] j= 0, 1, …, i-1.

30

We can think of the ordering of
words in a dictionary…

31

strcmp function

int strcmp(const char *s1, const char *s2);

• This function returns:
– a negative value - if s1 < s2
– 0 - if s1 = s2
– a positive value - if s1 > s2

32

Example

...
char *p=”Student”;
char name[20];
…
printf(“\n Password: “);
gets(name);
if (strcmp(name, p))

exit(1);
…

33

stricmp function
int stricmp(const char *s1, const char *s2);

• This function is similar to strcmp. The only
difference is that stricmp function does not
distinguish between uppercase and
lowercase letters.

• Note: there is strcmpi on some compilers

34

Example
Considering:

…
char *sir1 = “ABC”;
char *sir2 = “abc”;
int i;
…

By using: i = strcmp(sir1, sir2);
we obtain a negative value, since “ABC”<”abc” (A has 41h, while a has 61h)

But when: i = stricmp(sir1, sir2);
we obtain zero

35

strincmp function
int strincmp(const char *s1, const char *s2, unsigned n);

• This function limits the comparison up to n
characters (and also ignores the difference
between uppercase and lowercase letters).

• Note: there is strncmpi or strncmp on some
compilers

36

Example

• Write a program that reads a sequence of
words, and finally displays only the
greatest word from that sequence.

37

#include<stdio.h>
#include<string.h>
#define MAX 100

int main ()
{ char word[MAX+1];
char word _max[MAX+1];
word _max [0]=’\0’; /* word _max is initialized with null */

while (scanf(“%100s”, word)!=EOF)
{ if (stricmp(word, word _max)>0)

strcpy (word _max, word);
}

printf(“\n The greatest word is %s”, word _max);

getch();
return 0;

}

38

5. Finding strings or characters

• Some useful functions:
strchr(s1, ch); /* return a pointer at first

finding of ch character in s1 */
strstr(s1, s2); /* return a pointer at first

finding of s2 inside s1 */

• If there is no match (finding), then these
functions return zero.

39

Syntax:

char *strchr(const char *s1, const char ch);

char *strstr(const char *s1, const char *s2);

40

Example
#include<stdio.h>
#include<string.h>
…

int main ()
{
char s[80];
gets(s); /* write a text */
...
if (strchr(s, ’e’)) printf(”The character - e - was find in the string”);

if (strstr(s, ”test”)) printf(”The word - test - was find in the string”);
...
}

41

Initializing Arrays
• In C, an array can be initialized, either one by

one element, or using a single statement as
follows:

double A[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};

• The number of values between braces { }
can not be larger than the number of
elements that we declare for the array
between square brackets [].

42

Two-Dimensional Arrays
• The simplest form of the multidimensional

array is the two-dimensional array. A two-
dimensional array is, in essence, a list of
one-dimensional arrays. To declare a two-
dimensional integer array of size lim_1,
lim_2 you would write something as
follows:

type arrayName[lim_1][lim_2]

