
Computers
Programming

Course 10
Iulian Năstac

2

4. Calling through the
arguments of a function

Calling a function in C can be
realized (relative to the nature of his
arguments) in two ways:

- by value;

- by reference.

Recap from previous course

3

a. Calling by value
If data is passed by value, the data is copied from the
variable used in (for example main()) to a variable used by
the function. So if the data passed (that is stored in the
function variable) is modified inside the function, the value is
only changed in the variable used inside the function.

b. Calling by reference
When the function uses a pointer parameter then in that
formal parameter it is actually copied an address of the
memory. The call by reference method of passing
arguments to a function copies the address of an argument
into the formal parameter. Inside the function, the address is
used to access the actual argument used in the call. This
means that changes made to the parameter affect the
passed argument.

4

5. Values returned by a
function

• A return statement causes execution to leave the
current subroutine and resume at the point in the
code immediately after where the subroutine was
called, known as its return address.

• The return address is saved, usually on the process's
call stack, as part of the operation of making the
subroutine call.

• Return statements in C allow a function to specify a
return value to be passed back to the code that called
the function.

Recap from previous course

5

6. Recursive functions
• Recursion is a programming technique that allows

the programmer to express operations in terms of
themselves.

• In C, this takes the form of a function that calls
itself.

• A useful way to think of recursive functions is to
imagine them as a process being performed where
one of the instructions is to "repeat the process".

• This makes it sound very similar to a loop because
it repeats the same code, and in some ways it is
similar to looping.

Recap from previous course

6

7. The efficiency of the functions
Functions are essential to write effective
programs (unless very simple ones). However,
in some special applications it is better to
remove and replace a function with an inline
code.

Inline code performs the same actions as the
function without the disadvantage caused by a
function call (including the decreasing of
speed).

Recap from previous course

7

8. Variadic functions
• A variadic function is a function that accepts a

variable number of arguments.

• A good example, among specific operations, that
has been implemented as a variadic function in
many languages is output formatting. The C
function printf format is such an example.

• To portably implement variadic functions in the C
programming language, the standard stdarg.h
header file is used. The older varargs.h header is
still in use for some compilers.

Recap from previous course

8

There are 4 storage classes in C:

• auto

• register

• static

• extern

Recap from previous course

9

Notes:

• Global variables (static and extern) are
initialized to 0 automatically

• Local variables get arbitrary values,
depending on actual bits' configuration on
stack memory

Recap from previous course

10

Initialization
• Initialization is the assignment of an initial

value for a data object or variable.

• Syntax:
class type name = expression;

Recap from previous course

11

Notes (again):
• Avoid to use local variables (auto) which

are not initialized. These variables get
arbitrary values when are initialized. This is
due to the fact that on the stack when a
variable is erased, this doesn't means that
their position on the stack will become zero.

• Global and static variables always get zero
value at declaration.

• Function parameters cannot be
initialized.

Recap from previous course

12

Cap. Matrices (Arrays)
• Matrix representation is a method used by a

computer language to store matrices of different
dimension in memory.

• In C programming language, a matrix is a
collection of variables (of the same type) that
can be called with the same name.

• C programming language uses "Row Major"
schema, which stores all the elements for a
given row contiguously in memory.

13

Notes:
• Instead of declaring individual variables, such as

number0, number1, ..., and number99, you
declare one array variable such as numbers and
use numbers[0], numbers[1], and ...,
numbers[99] to represent individual variables. A
specific element in an array is accessed by an
index.

• All arrays consist of contiguous memory
locations. The lowest address corresponds to
the first element and the highest address to the
last element.

14

Declaring Arrays
• Syntax:

type arrayName [lim_1] [lim_2] … [lim_n];

• where lim_i is the limit of index i (on
dimension i)

• The index i can have the following values:
0, 1, 2, … , lim_i - 1

15

Notes:
• Each lim_i (where i = 0, 1, 2, …, n) is a positive

integer.
• We can access the elements of a matrix by

using variables with indices.
• In C, the name of a matrix is in fact a pointer that

indicates the address of its first element.
• At the declaration of a matrix, the compiler

allows a memory zone to contiguous store all its
elements.

• Matrices and pointers are strong related.

16

Column 0 Column 1 Column 2 Column 3

row 0 a[0][0] a[0][1] a[0][2] a[0][3]

row 1 a[1][0] a[1][1] a[1][2] a[1][3]

row 2 a[2][0] a[2][1] a[2][2] a[2][3]

Example
• int a[3][4];

this declares an integer array of 3 rows and 4
columns. Index of row will start from 0 and will
go up to 2.

17

One-dimensional matrices
(vectors)

• The vectors are one-dimensional arrays.

• Syntax:
type name_vect [lim];

18

Notes:
• The declaration:

char p[10];
creates a matrix of 10 elements, from p[0] to p[9].

• The amount of memory required for recording a matrix is
proportional to the type and its size. The total size in bytes
is calculated:

No_of_bytes = sizeof(type) * lim;

• C does not control the limits of the array. You can
overcome both edges of a matrix and write in wrong place
(of other variables). It remains the responsibility of the
programmer to control limits, where necessary.

19

Example of a mistake:

…
int mat[100], i;
…
for (i=0; i<=100; i++)

mat[i]=i;

…

20

• A vector is actually a list of
information of the same type
stored in contiguous memory
locations, in the order of indices.

21

The relationship between pointers
and vectors

• The name of an array is a pointer because it
holds the value the address of its first element.
However there is a difference between an array
name and a pointer type variable. Thus, a
pointer type variables can be assigned values at
runtime, while it is not possible to make the
same for an array/vector (the name of a
vector/array always represents the address of its
first element).

• It is customary to say that the name of an array
is a constant pointer.

22

Example:

………
int t[10];
int *p;
int x;
………
p=t;
………
x=t[0];

23

How to use a vector as a
parameter to a function

• as a pointer

• as a vector with unmentioned dimension

• as a vector with mentioned dimension

24

Examples:
a) void funct (int *x) /* pointer*/

{...........
}

b) void funct (int x[]) /* vector with unmentioned dimension*/
{...........
}

c) void funct (int x[10]) /* vector with mentioned
dimension */

{..........
}

Notes:
1) All three methods of declaration (previously exemplified) will

provide similar results because each sends the compiler a
pointer to an integer value, which is the first element of the
vector (in fact, in the first example, a pointer is clearly used).

2) In case of use as a function argument, the size of the matrix
does not really matter, because C does not control the
boundaries. It will be absolutely correct to use, for instance,
the form:

void funct (int x[50])
{..........
}

because C creates a code that instructs the function funct() to
receive a pointer to that array and does not actually create an
array of 50 values. 25

Example:

Initial data:
• A program reads a vector of numbers and

then displays them in ascending order.

• The maximum number of items is 1000.

• A function for ordering numbers will be
used, which will be named:

void ordcresc(double tab[], int n) 26

#include <stdio.h>
#include<conio.h>
#define MAX 1000
void ordcresc(double tab[],int n);
int main()
{ double v[MAX];

int m,s,i;
printf("\ Enter the number of elements = "); scanf("%d", &m);
printf("\n Enter the vector elements: \n");
for(s=0 ; s<m ; s++)
scanf("%lf",&v[s]);
ordcresc(v,m);
for(i=0;i<m;i++)
{ printf("v[%d]=%g\n",i,v[i]);

if((i+1)%23==0)
{ printf(“\n Press a key to continue \n"); getch();
}

}
getch();

}
…

27

…
void ordcresc(double tab[], int n)
/* Sort the elements of tab in ascending order */
{
int i,ind;
double t;
ind=1;
while(ind)
{
ind=0;
for(i=0;i<n-1;i++)

if(tab[i]>tab[i+1])
{ t=tab[i];
tab[i]=tab[i+1];
tab[i+1]=t;
ind=1;

} /*end if*/
} /*end while*/

} 28

29

const modifier
• A variable can be transformed into a constant

value (that cannot be modified).

• Usually a constant is defined using
define

• But const modifier can also transform a variable
into a constant.

30

Possible syntaxes:

1) type const name = value;

2) type const *name = value;

3) const type name = value;

4) const type *name = value;

5) const name = value;

31

Notes:
• Once established the variable (which is

const), further assignments, like:
*name=’a’; or
*(name+1)=’b’

are incorrect.
• If the assignment is missing, then it means

that we are dealing with a formal
parameter of a function:

tip f (const tip *name);

32

Attention
• It is possible to circumvent the restrictions

imposed by the modifier const. If you use
another variable that refers to the same memory
location, then that location (other pointer) may
alter its content:

...
char const *s = ”string of char”;
char *p;
p = (char *)s;
*p = ’a’;
*(p+1) = ’b’;
...

33

Strings in C

• The character string is one of the most
widely used applications that involves
vectors.

• A string in C is an array of char values
terminated by a special null character
value '\0'.

34

Example: a statically declared
string that is initialized to "hi":

char str[3];

str[0] = 'h';

str[1] = 'i';

str[2] = '\0';

printf("\n %s \n", str);

35

Main properties of strings:
1. A string is stored in a memory organized as a vector of char type.
2. Each character is kept on different byte (through its successive

code number).
3. The most commonly used code for this purpose is ASCII.
4. After the last character of the string there must be added the null

character, which is '\0‘.
5. Since there is null in final position, then we have to declare the

character array with one more character than the effective number
of characters.

6. Although C does not have explicit data string, it allows constant
string. A string constant is a list of characters enclosed in quotation
marks (eg "hello").

7. Often it is not necessary to be entered manually the null character
at the end of the string (the compiler does automatically). This
happens when using special functions to operate strings (like
gets()).

8. To operate a string you can use:
– The name of the array (the constant pointer to the string respectively);
– A simple pointer to that string.

36

Example
If we declare:

char tab[] =”This is a string”;

then:
tab – is the address of first char `T`
tab+1 – is the address of second char `h`
tab+2 – is the address of third char `i`
…
etc.
or:
tab[0] → contains the ASCII of first char `T`
tab[1] → contains the ASCII of second char `h`
…
A similar effect we can obtain by using:

char const *p = ”This is a string”;
where
p[0] or *p - contains the ASCII of first char `T`
p[1] or *(p+1) - contains the ASCII of second char `h`
…

37

Standard functions for strings
• C provides a library for strings (string.h).

• C string library functions do not allocate
space for the strings they manipulate, nor
do they check that you pass in valid strings;
it is up to your program to allocate space
for the strings that the C string library will
use.

• Calling string.h library functions with bad
address values will cause a fault or
"strange" memory access errors.

38

Some of the functions in the
Standard C string library

• calculating the length of strings (e.g.
strlen)

• copying the strings (e.g. strcpy)
• concatenating the strings (e.g. strcat)
• comparing the strings (e.g. strcmp)
• searching (identification) of character

or substrings (e.g. strchr, strstr)

