
Computers
Programming

Course 9
Iulian Năstac

Cap. Procedural programming - Functions

• Procedural programming is a specific feature of high-level
programming languages . If you want to execute a set of
instructions with different data or in different places, then you
can put all of them into a subroutine that will be called by a
jump whenever needed. After this jump, will return to the
instruction following the one in which he leaped and therefore
differs from jumps performed with goto statement.

• This type of sequence organization above bears different
names in programming languages : subprogram, subroutine,
procedure, function, etc.

2

Recap from previous course

3

1. Function declarations
a) classic style :

type name_function() ;

No information on the parameters, so there may be no error
checking.

b) modern syle :
type name_function(inf_p1, inf_p2, ... etc.);

where inf_p is declaring type of the variable used as an
argument to the function.

Recap from previous course

4

2. Complete description of functions

a) Classic style
type name_function(name of parameters)

description of parameters
{
...
}

b) Modern style
type name_function(inf_p, inf_p, ...)

{
...
}

Recap from previous course

5

The logic of writing a program in "C" is:

- Including the header file;

- Declarations of global variables and constants;

- Declarations of functions;

- Describing the main function;

- Describing all functions declared.

Recap from previous course

6

3. Zone of influence for a C
function

Definition: The sphere of influence of a
language means the set of rules that
determine how a code sequence can
access another sequence of code or
data.

7

In the C language, within the sphere of influence are
adhered to the following principles:

1.Each function contains its own block of code and no
other instruction from another function can not have
access to it, excepting the function call. We cannot
use goto to jump between functions.

2. If a function does not use global variables or data, it
cannot affect other parts of the program. The code
and data of a function cannot interact directly with
the code and data of another function.

8

Principles (cont.)

3. In C programming, all functions have the
same level of sphere of influence. C is not
technically a sort of block structured
language. It is forbidden to define a function
in another function (but a instruction inside a
function can call another function).

9

Principles (cont.)

4. Variables defined in a function are called
local variables. A local variable is created
within a function (or a inner block) and is
destroyed on exit. So local variables do not
retain their value between different calls of
that function. The only exceptions are such
local variables that are declared with static,
which are not destroyed after leaving that
function but are limited, as sphere of
influence, inside the function.

10

Principles (cont.)
5. We want to call a function inside another function, by using an

argument that is a variable.
Example:

type f1 ()
{ type x;

...
f2(x);
...

}

Function f2 gets a copy of the argument value. What happens
inside the function f2 has no effect on the variable used as
parameter (i.e. x from the function f1).

6. Different functions can have local variables with the same name
which do not lead to mutual influence between functions.

11

Example:
We will write a program that requires the
introduction of variables n and k (as integers) from
the keyboard and check if they belong to the
interval [1,50]. The program calculates and
provides the result:

It must be verified that: k<n.

)!(!
!

knk
nC k

n

12

Flowchart of a program which shows only
the evolution of the function main.

13

The flowchart of fact function is:

14

#include <stdio.h>
double fact(int n);
int main(int)
{ int k,n;

printf(”\n Enter n=”);
scanf(”%d”,&n);
printf(”\n Enter k=”);
scanf(”%d”,&k);
if (n<1||n>50||k<1||k>50||k>n)

printf(”\n Incorrect data”);
else printf(”\n Result = %g”,fact(n)/(fact(k)*fact(n-k)));

}
double fact(int n)
{ double f;

int i;
for (i=2,f=1.0;i<=n;i++)

f*=i;
return f;

}

15

4. Calling through the
arguments of a function

Calling a function in C can be
realized (relative to the nature of his
arguments) in two ways:

- by value;

- by reference.

Recap from previous course

16

a. Calling by value
If data is passed by value, the data is copied from the
variable used in (for example main()) to a variable used by
the function. So if the data passed (that is stored in the
function variable) is modified inside the function, the value is
only changed in the variable used inside the function.

b. Calling by reference
When the function uses a pointer parameter then in that
formal parameter it is actually copied an address of the
memory. The call by reference method of passing
arguments to a function copies the address of an argument
into the formal parameter. Inside the function, the address is
used to access the actual argument used in the call. This
means that changes made to the parameter affect the
passed argument.

17

Example of calling by value:

#include <stdio.h>
void call_by_value(int x)
{ printf("Inside call_by_value x = %d before adding 10.\n", x);

x += 10;
printf("Inside call_by_value x = %d after adding 10.\n", x);

}

int main()
{ int a=10;

printf("a = %d before function call_by_value.\n", a);
call_by_value(a);
printf("a = %d after function call_by_value.\n", a);
return 0;

}

18

Example of calling by reference:
#include <stdio.h>
...
void taking_over(float*p1,float*p2);
...
int main()
{

float x, y, …;
taking_over (&x, &y);
...

}

void taking_over(float*p1, float*p2)
{

printf (" \nIntroduce the first number: ");
scanf ("%f", p1);
printf ("\nIntroduce the second number: ");
scanf ("%f", p2);

}

19

Example 2 of calling by reference:
#include <stdio.h>

void call_by_reference(int *y)
{ printf("Inside call_by_reference y = %d before adding 10.\n", *y);

(*y) += 10;
printf("Inside call_by_reference y = %d after adding 10.\n", *y);

}

int main()
{ int b=10;

printf("b = %d before function call_by_reference.\n", b);
call_by_reference(&b);
printf("b = %d after function call_by_reference.\n", b);

return 0;
}

20

5. Values returned by a
function

• A return statement causes execution to
leave the current subroutine and resume
at the point in the code immediately after
where the subroutine was called, known
as its return address.

• The return address is saved, usually on
the process's call stack, as part of the
operation of making the subroutine call.

• Return statements in C allow a function to
specify a return value to be passed back
to the code that called the function.

21

In C/C++, the syntax is:

return exp; /* where exp is an expression */

This is a statement that tells a function to return
execution of the program to the calling function,
and report the value of exp.

If a function has the return type void, the return
statement can be used without a value, in which
case the program just breaks out of the current
function and returns to the calling one.

22

Notes:

1. In a function we can find one or more return
instruction. Value or variable that follows the
return statement must be of the function type
(or converted to that type).

2. Often functions of void type lack return
statement. However a function of type void can
contain one or more simple return instructions,
but unless accompanied by a return value.

23

Notes (continued):

3. A function cannot be assigned.
Therefore:

f(x,y)=100;
is an incorrect statement. The parameters of a function
cannot be initialized.

4. The type a function is not related to the types of its
parameters.

5. Sometimes, the return statement is not necessary in
specific functions (where the arguments are called by
reference)… even if we expect something to be
returned from such a function.

24

6. Recursive functions
• Recursion is a programming technique that allows

the programmer to express operations in terms of
themselves.

• In C, this takes the form of a function that calls
itself.

• A useful way to think of recursive functions is to
imagine them as a process being performed where
one of the instructions is to "repeat the process".

• This makes it sound very similar to a loop because
it repeats the same code, and in some ways it is
similar to looping.

25

Notes:

• Recursion makes it easier to express
ideas in which the result of the recursive
call is necessary to complete the task.

• Of course, it must be possible for the
"process" to sometimes be completed
without the recursive call.

26

Recursive:

int fact(int n)
{int f;
if (n==1) return (1);
f=fact(n-1)*n;
return(f);
}

Non-recursive:

int fact(int n)
{ int i,f;
for(f=1,i=2;i<=n;i++)

f*=i;
return f;
}

Two variants (recursive and non-recursive) of the function
for calculating the factorial of an integer:

27

Notes:

1.A recursive routine does not significantly reduce
code size nor improves memory usage.

2. Usually, recursive functions are slower than theirs
iterative equivalent.

3. Misuse of recursion can cause overrunning the
memory on a computer system.

4. However, a recursive version of a function could
provide an advantage: creating simpler and clearer
versions of algorithms (e.g.: sorting).

28

7. The efficiency of the functions
Functions are essential to write effective
programs (unless very simple ones). However,
in some special applications it is better to
remove and replace a function with an inline
code.

Inline code performs the same actions as the
function without the disadvantage caused by a
function call (including the decreasing of
speed).

29

8. Variadic functions
• A variadic function is a function that accepts a

variable number of arguments.

• A good example, among specific operations, that
has been implemented as a variadic function in
many languages is output formatting. The C
function printf format is such an example.

• To portably implement variadic functions in the C
programming language, the standard stdarg.h
header file is used. The older varargs.h header is
still in use for some compilers.

30

Variables

•Local

•Global

31

Note:

• Global variables have a definition and
optionally, another one or more external
variable declarations.

32

Storage classes of variables in C

• In C programming language, the scope and
lifetime of a variable or function within a
program is determined by its storage class.

• Each variable has a lifetime, or the context in
which they store their value.

• Functions, along with variables, also exist
within a particular scope, or visibility, which
dictates which parts of a program know
about and can access them.

33

There are 4 storage classes in C:

• auto

• register

• static

• extern

34

auto
• Variables declared inside the function body are

automatic by default. These variable are also known as
local variables as they are local to the function and
doesn't have meaning outside that function

• Since, variable inside a function is automatic by default,
keyword auto are rarely used. There's a good chance
you've never seen this keyword. That's because auto is
the default storage class, and therefore doesn't need to
be explicitly used often.

• Automatic variables are automatically allocated on stack
memory when a program enters a block, and released
when the program leaves that block. Access to
automatic variables is limited to only the block in which
they are declared, as well as any nested blocks.

35

register
• register behaves just like auto, except that instead of

being allocated onto the stack, they are stored in a
register.

• Registers offer faster access than RAM, but because of
the complexities of memory management, putting
variables in registers does not guarantee a faster
program - in fact, it may very well end up slowing down
execution by taking up space on the register
unnecessarily.

• As it were, using register is actually just a suggestion to
the compiler to store the variable in the register;
implementations may choose whether or not to honor
this.

36

int power(register int m, register int e)
{ register int temp;
temp=1;
for (; e; e--)

temp=temp *m;
return temp;
}

Example:

37

38

static
When it comes to storage classes, the keyword
static means one of two things:

1. A static variable inside a method or function
retains its value between invocations.

2. A static variable declared globally can called
by any function or method, so long as those
functions appear in the same file as the static
variable. The same goes for static functions.

39

extern
• Whereas static makes functions and variables globally

visible within a particular file, extern makes them visible
globally to all files.

• External variable can be accessed by any function. They
are also known as global variables. Variables declared
outside every function are external variables.

• In case of large program, containing more than one file,
if the global variable is declared in file 1 and that variable
is used in file 2 then, compiler will show error. To solve
this problem, keyword extern is used in file 2 to indicate
that, the variable specified is global variable and
declared in another file.

40

Notes:

• Global variables (static and extern) are
initialized to 0 automatically

• Local variables get arbitrary values,
depending on actual bits' configuration on
stack memory

41

Initialization
• Initialization is the assignment of an initial

value for a data object or variable.

• Syntax:
class type name = expression;

42

Notes (again):

• Avoid to use local variables (auto) which
are not initialized. These variables get
arbitrary values when are initialized. This is
due to the fact that on the stack when a
variable is erased, this doesn't means that
their position on the stack will become zero.

• Global and static variables always get zero
value at declaration.

• Function parameters cannot be
initialized.

43

Cap. Matrices (Arrays)
• Matrix representation is a method used by a

computer language to store matrices of different
dimension in memory.

• In C programming language, a matrix is a
collection of variables (of the same type) that
can be called with the same name.

• C programming language uses "Row Major"
schema, which stores all the elements for a
given row contiguously in memory.

44

Notes:
• Instead of declaring individual variables, such as

number0, number1, ..., and number99, you
declare one array variable such as numbers and
use numbers[0], numbers[1], and ...,
numbers[99] to represent individual variables. A
specific element in an array is accessed by an
index.

• All arrays consist of contiguous memory
locations. The lowest address corresponds to
the first element and the highest address to the
last element.

45

Declaring Arrays
• Syntax:

type arrayName [lim_1] [lim_2] … [lim_n];

• where lim_i is the limit of index i (on
dimension i)

• The index i can have the following values:
0, 1, 2, … , lim_i - 1

46

Notes:
• Each lim_i (where i = 0, 1, 2, …, n) is a positive

integer.
• We can access the elements of a matrix by

using variables with indices.
• In C, the name of a matrix is in fact a pointer that

indicates the address of its first element.
• At the declaration of a matrix, the compiler

allows a memory zone to contiguous store all its
elements.

• Matrices and pointers are strong related.

47

Column 0 Column 1 Column 2 Column 3

row 0 a[0][0] a[0][1] a[0][2] a[0][3]

row 1 a[1][0] a[1][1] a[1][2] a[1][3]

row 2 a[2][0] a[2][1] a[2][2] a[2][3]

Example
• int a[3][4];

this declares an integer array of 3 rows and 4
columns. Index of row will start from 0 and will
go up to 2.

48

One-dimensional matrices
(vectors)

• The vectors are one-dimensional arrays.

• Syntax:
type name_vect [lim];

49

Notes:
• The declaration:

char p [10];
creates a matrix of 10 elements, from p [0] to p [9].

• The amount of memory required for recording a matrix is
proportional to the type and its size. The total size in bytes
is calculated:

No_of_bytes = sizeof(type) * lim;

• C does not control the limits of the array. You can
overcome both edges of a matrix and write in wrong place
(of other variables). It remains the responsibility of the
programmer to control limits, where necessary.

