
Computers
Programming

Course 8
Iulian Năstac

2

Instructions (Flow Control)
1. Introduction

Definition:

• Generally, an instruction is a part of the
program, which can be directly executed.

• An instruction specifies an action of some
kind.

Recap from previous course

3

Instructions
(statements)

• There are several flow control statements
in C programming language.

• Basically, C instructions can be organized
as:
– Selection instructions
– Loop instructions
– Jump instructions
– Label instructions
– Expression instructions
– Block instructions

Recap from previous course

4

2. Selection instructions

• In the selection instructions we can meet
two distinct forms: if ... else and switch.

• Note that, in some certain circumstances,
a selection instruction can be replaced by
the conditional operator (…?... :…).

Remember about the simple version of the game "Guess the magic number."

Recap from previous course

5

2.1.3. Conditional operator (? :)
The conditional operator (? :) could replace if-else, in
the following manner:

if (cond) exp_1;
else exp_2;  cond ? exp_1 : exp_2;

Note: With this substitution, the subject for both "if"
and "else" must be a simple expression.

Recap from previous course

6

Flowchart for switch

Observe the similarity with if-else-if chain.

Recap from previous course

7

3. Loop instructions

A loop instruction (iteration)
allows a set of instructions to
be executed repeatedly until a
certain condition is satisfied.

Recap from previous course

8

3.1. for statement

This instruction is found in most
programming languages , but in C has a
maximum flexibility.

Syntax:
for(initialization; test condition; increment/decrement)
{
/*block of statement*/
}

Recap from previous course

9

Recap from previous course

10

3.2. while statement

Syntax:

while(condition)
{

/*block of statement*/
}

Loop repeats as long as the test condition is true.

Recap from previous course

The workflow for the while
instruction

11

Recap from previous course

12

Equivalence for while:
for (exp1; exp2; exp3)

{
/*block of statement*/

}


exp1;
while (exp2)

{ /*block of statement*/
exp3;

}
Notes:
1) The condition is tested at the beginning.
2) If the condition is initially false then the whole loop is
ignored.

13

3.3. do – while statement
Syntax:

do
{ ….

/*block of statement*/
} while(condition);

Recap from previous course

The workflow for the do-while
instruction

14

Homework:
Rewrite the problem with magic
numbers so that the program will
ask the user to re-introduce a
number, many times, till it will
guess the one chosen by the
computer (through rand function).

15

Remember

16

4. Jump statements

The jump statements include:

- return → may be located anywhere in the
program .
- goto → may be located anywhere in the
program .
- break → within looping instructions or switch
statement.
- continue → within looping instructions.

Recap from previous course

17

4.1. return statement
It is used to return from a function.

Syntax:
return expression;

where expression is present only if the function is
declared as returning a value. Value of the expression
is converted to the function type.

Note: A function declared with void may not contain a
return statement.

18

4.2. goto statement
Syntax: goto label;

...
label;

Remarks:
- this instruction is avoided because of the abuse to create programs
that are not portable;
- There are not situations that require an exclussive goto statement. The
label is a valid specifier, which must be in the same block with goto.
You can not jump between functions.

- The label can be placed before or after goto.

Example:
x=1;
LABEL 1;

x++;
if (x<100) goto LABEL1;
...

19

4.3. break statement
It has two uses:
- finish a case from a switch statement;
- break a loop.

Example:
...
while(1)

{
... /* some operations are executed from a menu */
…
printf (”\Do you want to leave this menu?”);
if ((c=getche())==’d’) break;
}

...

20

Note: A break causes the output only from the innermost loop
in which it exist.

Example:
Display numbers from 1 to 10, 100 times.
…

int t, contor;
for(t=0; t<100; t++)

{ contor=1;
for(; ;)
{ printf(" %d",contor);

contor++;
if(contor==11)

{
printf("\n");
break;

}
}

}
…

21

Function exit()
The function exit() is presented as a sort of generalized break instruction.
This function determines the immediate stop of a program.

Syntax:
void exit(stop_code);

Notes on exit function parameter:
- stop_code is an int;
- "0" is used to indicate the normal completion of the program.
- function exit () can be used when the program takes a bad turn.

Example: Sequence of a program that requires a special graphics adapter.
...
int main()
{
…
if(!virtual_graphics()) exit(1);

... /* play */
}

22

4.4. continue statement
Continue statement is used only in loops. This
instruction forces with the next iteration of the
loop, ignoring the rest of the code in the current
iteration.

The effect of this instruction is:

a. inside the for loop, continue causes direct execution of
the incrementing sequence, and then execution of the
conditioning test.

b. for while and do-while loops, the program control passes
to the conditioning test.

23

Example 1
A program that displays all the 1-100 factorials of the consecutive
numbers. The program displays the sequence of 15 numbers,
then waiting a key to display the next 15 factorials.

include <stdio.h>
include<conio.h>
int main()
{ int i,j,k;

double f;
for(i=1;i<=100;i++)
{ for(f=1.0, j=2;j<=i;j++)

f*=j;
printf("\n %d factorial is %g",i,f);
k=i%15;
if (k) continue;
getch();

}
getch();

}

24

Example 2

Encoding a message, by changing all characters you type with the
next letter in ASCII code (for instance A becomes B). The program
stops when you type $.

...
char Finish, ch;
...
Finish = 0;
while (! Finish)

{ ch=getch();
if(ch==’$’)

{Finish = 1;
continue;
}

putchar(ch+1);
}

...

25

5. Label instructions

These are valid labels encountered during execution of a
program.

In C, the label instructions are of two types:

- case and default - discussed in the switch statement;
- Valid labels - discussed in the goto statement.

26

6. expression type statements

An expression instruction is any valid
expression followed by a semicolon (;). This
includes a null instruction.

An empty statement is reduced to only a
semicolon (;). It has no effect, but is
frequently used in certain alternative codes.

27

7. block statements
A block statement is a sequence of instructions (of different kinds)
enclosed in braces.

Syntax:
{

inner successive statements;
}

Block instructions are groups of instructions that are treated as a unit.

Remarks:
Any switch is followed by a block statement.
The most commonly situation is when used several instructions to create a
multiple instruction as object of another instruction.

28

Cap. Procedural programming -
Functions

29

Introduction
Procedural programming is a specific feature of high-level
programming languages . If you want to execute a set of
instructions with different data or in different places, then you
can put all of them into a subroutine that will be called by a
jump (to a specific memory address) whenever needed. After
this jump, the program will return to the next instruction (after
the one in which it leaped or sometimes even in the same
instruction, in the case of a complex instruction) and therefore
differs from the jumps performed with goto statement.

This type of sequence organization above bears different
names in programming languages : subprogram, subroutine,
procedure, function, etc.

30

Many programming languages contain two
types (or categories) of procedures:

a) procedures that define a return value;

b) procedures that doesn't use a return
value.

31

In C, the using of functions in a
program involves:

- Declare functions;

- Defining functions (complete
description of functions).

32

RETURN_TYPE name_of_function (PARAMETER_TYPE name_of_param1,
PARAMETER_TYPE name_of_param2, … etc.);

// here are some examples of prototypes used at the top of a file:

float sqrt(float x);

float average(int grades[], int length);

33

1. Function declarations

a) classic style :
type name_function();

No information on the parameters, so there may be no error
checking.

b) modern syle :
type name_function(inf_p1, inf_p2, ... etc.);

where inf_p is declaring type of the variable used as an
argument to the function.

34

Function Declaration and
Function Prototypes

• All identifiers in C need to be declared before
they are used.

• This is true for functions as well as variables.
• For functions the declaration needs to be

before the first call of the function.
• A full declaration includes the return type and

the number and type of the arguments.
• This is also called the function prototype.

35

Note:

• Older versions of the C language
didn't have prototypes, the
function declarations only
specified the return type and did
not list the argument types.

36

2. Complete description of
functions

a) Classic style
type name_function(name of parameters)

description of parameters
{
...
}

b) Modern style
type name_function(inf_p, inf_p, ...)

{
...
}

37

Notes:

1.These two styles define the developmental stages
of language C. Most compilers today only use
programs written in modern style. The programs
written in the classical style can be easily corrected.

2. When complete describing the functions, the first
line will be identical to the prototype (the
declaration) with the observation that on this
definition does not appear semicolon (;).

38

3. At the present stage we can say that the logic
of writing a program in "C" is the following:

- Including the header file;

- Declarations of global variables and constants;

- Declarations of functions;

- Describing the main function;

- Describing all functions declared.

39

4. By declaring functions (prototypes), the
compiler makes preliminary checks on
function parameters.

5. The declaration of the functions follows
the order of their calling within the
program.

40

3. Zone of influence for a C
function

Definition: The sphere of influence of a
language means the set of rules that
determine how a code sequence can
access another sequence of code or
data.

41

In the C language, within the sphere of influence are
adhered to the following principles:

1.Each function contains its own block of code and no
other instruction from another function can not have
access to it, excepting the function call. We cannot
use goto to jump between functions.

2. If a function does not use global variables or data, it
cannot affect other parts of the program. The code
and data of a function cannot interact directly with
the code and data of another function.

42

Principles (cont.)

3. In C programming, all functions have the
same level of sphere of influence. C is not
technically a sort of block structured
language. It is forbidden to define a function
in another function (but a instruction inside a
function can call another function).

43

Principles (cont.)

4. Variables defined in a function are called
local variables. A local variable is created
within a function (or a inner block) and is
destroyed on exit. So local variables do not
retain their value between different calls of
that function. The only exceptions are such
local variables that are declared with static,
which are not destroyed after leaving that
function but are limited, as sphere of
influence, inside the function.

44

Principles (cont.)
5. We want to call a function inside another function, by using an

argument that is a variable.
Example:

type f1 ()
{ type x;

...
f2(x);
...

}

Function f2 gets a copy of the argument value. What happens
inside the function f2 has no effect on the variable used as
parameter (i.e. x from the function f1).

6. Different functions can have local variables with the same name
which do not lead to mutual influence between functions.

45

Example:
We will write a program that requires the
introduction of variables n and k (as integers) from
the keyboard and check if they belong to the
interval [1,50]. The program calculates and
provides the result:

It must be verified that: k<n.

)!(!
!

knk
nC k

n 


46

Flowchart of a program which shows only
the evolution of the function main.

47

The flowchart of fact function is:

48

#include <stdio.h>
double fact(int n);
int main(int)
{ int k,n;

printf(”\n Enter n=”);
scanf(”%d”,&n);
printf(”\n Enter k=”);
scanf(”%d”,&k);
if (n<1||n>50||k<1||k>50||k>n)

printf(”\n Incorrect data”);
else printf(”\n Result = %g”,fact(n)/(fact(k)*fact(n-k)));

}
double fact(int n)
{ double f;

int i;
for (i=2,f=1.0;i<=n;i++)

f*=i;
return f;

}

49

4. Calling through the
arguments of a function

Calling a function in C can be
realized (relative to the nature of his
arguments) in two ways:

- by value;

- by reference.

