
Computers
Programming

Course 7
Iulian Năstac

2

Recap from previous course
Operators in C

• Programming languages typically support
a set of operators, which differ in the
calling of syntax and/or the argument
passing mode from the language's
functions.

• C programming language contains a fixed
number of built-in operators.

3

1 () [] -> . :: Grouping, scope, array / member access

2 ! ~ - + * & sizeof type cast ++x - -x (most) unary operations, sizeof and type casts

3 * / % Multiplication, division, modulo

4 + - Addition and subtraction

5 << >> Bitwise shift left and right

6 < <= > >= Comparisons: less-than, ...

7 == != Comparisons: equal and not equal

8 & Bitwise AND

9 ^ Bitwise exclusive OR

10 | Bitwise inclusive (normal) OR

11 && Logical AND

12 || Logical OR

13 ?: = += -=
*= /= %= &= |= ^= <<= >>=

Conditional expression (ternary) and assignment
operators

14 , Comma operator

4

description
on natural
language

description
on pseudo-

code

logic
diagram

source
program compiling link-

editing

executable
program

Recap from previous course
The design of a program includes
several steps

5

Recap from previous course
Flow chart

(logic diagram)
• A flow chart is a

schematic representation
of an algorithm or a
process, or the step-by-
step solution of a problem.

• Flow charts use suitably
annotated geometric
figures connected by flow
lines for the purpose of
designing or documenting
a process or program.

6

Flowchart start / stop

Flowchart process

Flowchart connector

Flowchart selection

Flow line

7

Recap from previous course
Pseudocode

• Pseudocode is an informal high-level description
of the operating principle of a computer program
or other algorithm.

• No standard for pseudocode syntax exists, as a
program in pseudocode is not an executable
program.

• A programmer who needs to implement a specific
algorithm, especially an unfamiliar one, will often
start with a pseudocode description, and then
"translate" that description into the target
programming language and modify it to interact
correctly with the rest of the program.

8

Instructions (Flow Control)
1. Introduction

Definition:

• Generally, an instruction is a part of the
program, which can be directly executed.

• An instruction describes an action of a
specific kind.

9

Instructions
(statements)

• There are several flow control statements
in C programming language.

• Basically, C instructions can be organized
as:
– Selection instructions
– Loop instructions
– Jump instructions
– Label instructions
– Expression instructions
– Block instructions

10

True and false in C
• Many instructions in C are based on an

expression of conditioning that determines the
next action. A conditional expression is
evaluated as true or false.

• In C, unlike other languages , it is considered as
true any nonzero value (including negative
numbers). A false value is equivalent with 0.
True and false concepts allow a wide variety of
routines that can be efficiently encoded.

11

2. Selection instructions

• In the selection instructions we can meet
two distinct forms: if ... else and switch.

• Note that, in some certain circumstances,
a selection instruction can be replaced by
the conditional operator (…?... :…).

12

2.1. if statement

Syntax:

if (condition is true)
{
/*1st block of statements*/
}

else
{
/*2nd block of statements*/
}

13

14

Notes:

1) Only one instruction can be executed. If both
instructions are running it seems that an ”;” is placed
in a wrong position.

2) Conditioning that controls an "if" will cause a
scalar result.

15

Example:

Simple version of the game "Guess the magic
number."

• It displays correct if the player guesses the magic
number.
• To choose the magic number, a random function is
employed: rand().
• This function generates a random number in the
range [0, RAND_MAX] where RAND_MAX = 32.767.

16

include <stdio.h>
include <stdlib.h>
int main()
{ int magic;
int guess;
magic = rand();
printf (“\n Guess the magic number: “);
scanf (“%d”, & guess);
if (guess ==magic) printf (“\n Correct”);
else printf (“Wrong”);
getch();

}

17

2.1.1. Nested if

• It is always possible to nest if-else
statements, which means you can
use one if or else if statement inside
another if or else if statement(s).

18

Ex: if (i) { if (i) instr1;
if (k) instr2;
else instr3;

}
else instr4;

Note: ANSI C allows a number of at least 15
levels of nesting. In practice, most compilers
allow more levels. But, by using excessive
nesting the whole program becomes unclear.

19

Example: extend previous
program with a nesting level

include <stdio.h>
include <stdlib.h>
int main()
{
int magic;
int guess;
magic = rand();
printf (“\n Guess the magic number: “);
scanf (“%d”, &guess);
if (guess==magic) printf (“\n Correct”);
else { printf (“Wrong. ”);

if (guess>magic) printf(“Too big \n”);
else printf (“Too small \n”);

}
…

}

20

2.1.2. if – else – if chain
The if – else – if chain is an usual construction in
the case of multiple selections.

General form:

if (exp1) instr1;
else if (exp2) instr2;

else if (exp3) instr3;
else instr4;

21

Example:
Simplifying the previous program

include <stdio.h>
include <stdlib.h>
int main()
{
int magic;
int guess;
magic = rand();
printf (“\n Guess the magic number: “);
scanf (“%d”, &guess);
if (guess==magic) printf (“\n Correct”);
else if (guess>magic) printf(“too big \n”);

else printf (“too small \n”);
}

22

2.1.3. Conditional operator (? :)
The conditional operator (? :) could replace if-else, in
the following manner:

if (cond) exp_1;
else exp_2;  cond ? exp_1 : exp_2;

Note: With this substitution, the subject for both "if"
and "else" must be a simple expression.

23

Examples:

1) if (x>9) y=100;
else y=200;  y=x>9 ? 100:200;

2) t ? f1(t)+f2(t) : printf(“\n there is 0”);

24

Magic numbers again
include <stdio.h>
include <stdlib.h>
int main()
{
int magic;
int guess;
magic = rand();
printf (“\n Guess the magic number: “);
scanf (“%d”, &guess);
if (guess==magic) printf (“\n Correct”);
else (guess>magic) ? printf(“too big \n”) : printf (“too small \n”);

}

25

2.2. switch
It is an instruction that successively tests the result of an
expression or variable against a list of character or integer
constants.

General form:
switch (exp)

{ case const1: sequence of instructions_1;
break;

case const2: sequence of instructions_2;
break;

…
case constN: sequence of instructions_N;

break;
default: sequence of instructions_N+1;

}

26

Notes:

1) break is optional, but its missing can leads to
abnormal evolutions of the program.
2) default is optional.
3) ANSI Standard C states: C compilers must allow for
a switch statement max. 257 cases. Practically there
are no programs to use so many cases.
ANSI C++ - > 16.384 cases.
4) The sub-instruction case is forbidden outside a
switch.
5) A switch is useful for menu selection.

27

Flowchart for switch

Observe the similarity with if-else-if chain.

28

29

Example:
A simple program that add and subtract

...
float x, y;
char op;
…
scanf(“%f %f”, &x, &y);
op=getch();
switch(op);
{ case ‘+’: printf(“\n Summ: %f \n”, x+y);

break;
case ‘-‘: printf(“\n Substract: %f \n”, x-y);

break;
case ‘*’:
case ‘/’: printf(“\n Invalid operation\n”);

break;
default: printf(“\n Error \n”);

}
…

30

Notes:

1) There may be "cases" that haven't
associated any sequence instructions. When
this occurs the execution is placed to the
next "case".
2) An instruction execution continues with
the next case if there is no break statement.
This prevents sometimes duplication of
repetitive instructions and the result is a
more efficient code.

31

2.2.1. Nested switch
In some programs there may be a "switch" instruction
embedded in a sequence of another "switch". Even if some
constants from the inner switch and the outer one also,
contain similar values, there is no conflict anywhere.

...
switch(x)

{ case 1: switch(y)
{ case 0: printf(“message1”);

break;
case 1: procesat(x,y);

}
break;

case 2: …;
}

32

3. Loop instructions

A loop instruction (iteration)
allows a set of inner instructions
to be executed repeatedly as
long as a certain condition is
satisfied.

33

3.1. for statement

This instruction is found in most
programming languages , but in C has a
maximum flexibility.

Syntax:
for(initialization; test condition; increment/decrement)
{
/*block of statement*/
}

The for loop in C is executed as follows:

34

1. The initial counter value is initialized. This initialization
is done only once for the entire for loop.

2. After the initialization, test condition is checked. Test
condition can be any relational or logical expression. If
the test condition is satisfied i.e. the condition
evaluates to true then the block of statement inside the
for loop is executed.

3. After the execution of the block of statement,
increment/decrement of the counter is done. After
performing this, the test condition is again evaluated.

The step 2 and 3 are repeated till the test condition
returns false.

35

36

Notes:
1) Initialization, condition and increment step are
optional.
2) The associate statement may be invalid instruction
(no instruction), single or multiple (in a block {…}).

Example 1:

for (x=100; x!=65; x-=5)
{ y=x*x;
printf(“ \n Square of %d, is %f”, x, y);

}

#include<stdio.h>
#include<conio.h>
void main()
{

int i;
clrscr();
for(i=1; i<=5;i++)
{
printf("%d This will be repeated 5 times\n", i);
}
printf("End of the program");
getch();

} 37

Example 2:

38

3.1.1. Variations of for

Variations from the standard loop can be obtained using
the comma operator.

Example:
1) ...

for (x=0, y=0; x+y<10; ++x)
{ … }

2) ...
for (i=1, j=rand(); i<j; i++, j- -)

{ … }

39

3) Using a program access with password - the user can try up to
three times to enter the password.

...
char sir[20];
int x;
…
for (x=0; x<3 && strcmp(sir, “pass”); x++)

{ printf(“\n Please enter the password :”);
gets(sir);

}
if(x==3) exit(1); /* otherwise the program continues */
…
}

4) Some parts of the general definition may be missing.
...
for (x=0; x!=123;) scanf(“%d”, &x);

In the latter example, if you type 123 then the loop is finished.

40

3.1.2. The infinite for
Format: for(; ;) instruction;

Example:
for(; ;) printf(“This loop will run indefinitely \n”);

Notes:
1) When the expression of conditioning is absent,
it is assumed that it is true.
2) The construction for(; ;) does not necessarily
guarantee a true infinite loop because the break
statement used inside it determines its immediate
ending.

41

...
ch=’\0’;
for(; ;)

{ ch=getchar();
if(ch==’A’) break;

}/* the loop is indefinitely repeated until the
user will introduce an A from the keyboard*/

...

42

3.1.3. for without body of
statement

It can be used to increase the efficiency of
algorithms or create a delay loop.

Example: delay loop :
...
for (t=0; t<N; t++) ;
...

43

3.2. while statement

Syntax:

while(condition)
{

/*block of statement*/
}

Loop repeats as long as the test condition is true.

The workflow for the while
instruction

44

45

Equivalence for while:
for (exp1; exp2; exp3)

{
/*block of statement*/

}


exp1;
while (exp2)

{ /*block of statement*/
exp3;

}
Notes:
1) The condition is tested at the beginning.
2) If the condition is initially false then the whole loop is
ignored.

46

Example:
1) char ch;

ch = ’\0’;
…
while (ch != ’A’) ch=getchar();
…

The loop is indefinitely repeated until the user will introduce an A
from the keyboard.

2) The block of statement can be missing:

while ((ch=getchar()) != ’A’);

47

3.3. do – while statement

Syntax:

do
{ ….

/*block of statement*/
} while(condition);

The workflow for the do-while
instruction

48

49

• Here, while and do are the
keywords which is know to the
compiler.

• Condition can be any
expression.

• This is very similar to while loop.

50

Notes:
• The block of statement enclosed in the opening

and closing braces after the keyword do is
executed at least once.

• After the execution of the block of statement for
the first time, the condition in the do-while is
checked.

• If the conditional expression returns true, the
block of statement is executed again. This
process is followed till the conditional expression
returns false value.

51

Example: selection from a menu
...
char ch;
…
printf(”\n 1. Option 1 ”);
printf(”\n 2. Option 2 ”);
printf(”\n 3. Option 3 ”);
printf(”\n Enter an option ”);
do { ch=getchar();

switch(ch);
{ case ’1’: block of statement 1; break;

case ’2’: block of statement 2; break;
case ’3’: block of statement 3; break;

}
} while (ch!=’1’ && ch!=’2’ && ch!=’3’);

…

Homework:

Rewrite the problem with magic
numbers so that the program
will ask to re-entry a number
until the user will guess the
number chosen by the rand
function.

52

53

4. Jump statements

The jump statements include:

- return → may be located anywhere in the
program .
- goto → may be located anywhere in the
program .
- break → within looping instructions or switch
statement.
- continue → within looping instructions.

