
Computers
Programming

Course 6
Iulian Năstac

2

Recap from previous course
Data types

• four basic arithmetic type specifiers:
– char
– int
– float
– double

– void

• optional specifiers:
– signed,
– unsigned
– short
– long

3

Recap
Variables

• Variables are simply names used to refer
to some location in memory.

• Types of variables:
– Local variables
– Global variables

4

Recap
A more comprehensive

classification
• Automatic variables

– variables which are allocated and deallocated automatically
when program flow enters and leaves the variable's context

– An automatic variable is a variable defined inside a function
block

• External variables
– variable defined outside any function block

• Static local variables
– variables that have been allocated statically — whose lifetime

extends across the entire run of the program
• Register variables

– register allocation is the process of assigning a large number of
target program variables onto a small number of CPU registers

5

Recap
Standard I/O routines

• are substitute for missing of I/O instructions

• C programming language provides many
standard library functions for input and
output.

• These functions make up the bulk of the C
standard library header <stdio.h> (also in
<conio.h> and <stdlib.h>)

6

synthesis

Output functions Input functions

printf scanf

puts gets

putchar getchar

putch getch
getche

7

Recap
Expressions

• An expression in a programming language is a
combination of explicit values, constants,
variables, operators, and functions that are
interpreted according to the particular rules of
precedence and of association for a particular
programming language, which computes and
then produces another value.

• This process, like for mathematical expressions,
is called evaluation.

• The value can be of various types, such as
numerical, string, and logical.

8

Operators in C
• Programming languages typically support

a set of operators, which differ in the
calling of syntax and/or the argument
passing mode from the language's
functions.

• C programming language contains a fixed
number of built-in operators.

9

1 () [] -> . :: Grouping, scope, array / member access

2 ! ~ - + * & sizeof type cast ++x - -x (most) unary operations, sizeof and type casts

3 * / % Multiplication, division, modulo

4 + - Addition and subtraction

5 << >> Bitwise shift left and right

6 < <= > >= Comparisons: less-than, ...

7 == != Comparisons: equal and not equal

8 & Bitwise AND

9 ^ Bitwise exclusive OR

10 | Bitwise inclusive (normal) OR

11 && Logical AND

12 || Logical OR

13 ?: = += -=
*= /= %= &= |= ^= <<= >>=

Conditional expression (ternary) and assignment
operators

14 , Comma operator

10

Associativity

() - Function call
- Induce a priority in an
expression Left-to-right

[] - Array subscripting
. Element selection by

reference
-> Element selection through

pointer

1. Brackets and data structure
operators in C

11

2. Unary Operators
Associativity

++ Suffix increment Left-to-right

-- Suffix decrement

++ Prefix increment
Right-to-left-- Prefix decrement

+ Unary plus

- Unary minus

! Logical NOT

~ Bitwise NOT (One's Complement)

(type) Type cast

* Indirection (dereference)

& Address-of

sizeof Size-of

12

3. Multiplication operators

Associativity

* Multiplication

Left-to-right/ Division

% Modulo (remainder)

Example:

13

int a,b;
int E1, E2 ;

….
E1 = (a/b)*b ;

E2 = (a/b)*b + a%b ;

14

4. Additive operators

Associativity

+ Addition
Left-to-right

- Subtraction

15

5. Shifting operators

Associativity

<< Bitwise left shift
Left-to-right

>> Bitwise right shift

Ex.: x = y << 2;

assigns x the result of shifting y to the left by two bits.

Notes:
<< shift to the left (the left operand) with a
number of binary positions indicated by the
right operand
>> shift to the right (the left operand) with
a number of binary positions indicated by
the right operand

- The remaining bits become 0
- The left operand must be integer
- The right operand is converted to integer

16

17

6. Relational operators

Associativity

< Less than Left-to-right

<= Less than or equal to

> Greater than

>= Greater than or equal to

18

7. Equality operators

Associativity

== Equal to Left-to-right

!= Not equal to

19

8. Logic bit operators

Associativity

& Bitwise AND

Left-to-right
^ Bitwise XOR (exclusive or)

| Bitwise OR (inclusive or)

20

9. Logic operators

Associativity

&& Logical AND Left-to-right

|| Logical OR Left-to-right

21

10. Conditional operator
• In C programming, …? ... : … is a ternary operator

Format:
condition ? value_if_true : value_if_false

• The condition is evaluated true or false as a Boolean
expression

• associativity: Right-to-Left

• Ex.:
variable = condition ? value_if_true : value_if_false ;

The ? : operator is similar, in a way, with conditional
expressions (if-then-else format).

Note:
• One should ensures the right syntax of an

expression that contains conditional
operators.

For example:
E = ET1 ? (ET2 ? e1 : e2) : e3;
is written in the right way, while

E = ET1 ? e1 : ET2 ? e2 : e3;
is confusing.

22

23

11. Assignment operators
Associativity

=
+=
-=
*=
/=
%=
<<=
>>=
&=
^=
|=

Direct assignment
Assignment by sum
Assignment by difference
Assignment by product
Assignment by quotient
Assignment by remainder
Assignment by bitwise left shift
Assignment by bitwise right shift
Assignment by bitwise AND
Assignment by bitwise XOR
Assignment by bitwise OR

Right-to-left

24

12. Comma
• comma acts as separator between function

parameters or variables

• associativity: Left-to-right

Note that comma cannot be used in indexing
multidimensional array

Ex.: the code A[i, j] evaluates to A[j] with the i
discarded, instead of the correct A[i][j]

25

description
on natural
language

description
on

pseudo-
code

logic
diagram

source
program compiling link-

editing

executable
program

The design of a program includes
several steps

26

Flow chart
(logic diagram)

• A flow chart is a
schematic representation
of an algorithm or a
process, or the step-by-
step solution of a problem.

• Flow charts use suitably
annotated geometric
figures connected by flow
lines for the purpose of
designing or documenting
a process or program.

27

A typical flowchart may have the following kinds of
symbols:

• Start and Stop symbols - represented as circles, ovals or rounded (fillet)
rectangles.

• Arrows - showing "flow of control". An arrow coming from one symbol and
ending at another symbol represents that control passes to the symbol the
arrow points to.

• Generic processing steps -represented as rectangles.

• Input/Output - represented as a parallelogram.

• Conditional or decision -represented as a diamond (rhombus) showing
where a decision is necessary, commonly a Yes/No question or True/False
test.

• etc.

28

Flowchart start / stop

Flowchart process

Flowchart connector

Flowchart selection

Flow line

29

30

31

Pseudocode
• Pseudocode is an informal high-level description

of the operating principle of a computer program
or other algorithm.

• No standard for pseudocode syntax exists, as a
program in pseudocode is not an executable
program.

• A programmer who needs to implement a specific
algorithm, especially an unfamiliar one, will often
start with a pseudocode description, and then
"translate" that description into the target
programming language and modify it to interact
correctly with the rest of the program.

32

Pseudocode may vary widely in style

• Since, pseudocode generally does not
actually obey the syntax rules of any
particular language, there is no systematic
standard form.

• Popular syntax sources include Pascal,
BASIC, C, C++, Java, Lisp, and ALGOL.
Variable declarations are typically omitted.

33

C style pseudo code
void function fizzbuzz

for (i = 1; i<=100; i++)

{ set print_number to true;

if i is divisible by 3

print "Fizz“ ;

set print_number to false;

if i is divisible by 5

print "Buzz“ ;

set print_number to false;

if print_number, print i;

print a newline;

}

34

Instructions (Flow Control)
• There are several flow control statements

in C programming language.
• Basically, C instructions can be organized

as:
– Selection instructions
– Loop instructions
– Jump instructions
– Label instructions
– Expression instructions
– Block instructions

