
Computers
Programming

Course 5
Iulian Năstac

2

Recap from previous course
Classification of the programming languages

• High level (Ada, Pascal, Fortran, etc.)
– programming languages with strong abstraction from the

details of particular computer

• Medium level (C, C++, FORTH, etc.)

• Low level (assembly languages)
– programming languages that provide little or no

abstraction from a computer's instruction set architecture

3

Recap
C programming language

• 1966 Martin Richards (University of Cambridge)
developed BCPL (Basic Combined Programming
Language)

• 1969 Ken Thomson with contributions from Dennis
Ritchie – B programming language

• 1969-1973 Dennis Ritchie – C programming language

• 1978 Dennis Ritchie and Brian Kernighan had
elaborated a famous book, "The C Programming
Language".

4

Recap
The main properties of C
programming language
1. Portability
2. Data types
3. Errors control
4. Work at assembler level
5. Few keywords
6. Structured language
7. Programmers' language

5

Recap
The structure of a C program

• global statements:
– inclusions of header files
– statements of constants and global variables
– declarations of local functions

• function main()

• other functions

6

Recap
C preprocessor

• The preprocessor provides the ability for:

– inclusion of header files

– macro expansions

– conditional compilation

7

Constants in C Language
• Constants can be very useful in C programming

whenever you need a value that is repeated
during the program

• Ex:
#define PI 3.14159

• Declaring a constant allows you to quickly and
easily change a value that is used throughout
the program simply by changing the initial
declaration.

8

Data types
• five basic arithmetic type specifiers:

– char
– int
– float
– double

– void

• optional specifiers:
– signed,
– unsigned
– short
– long

9

Type Explanation
char Smallest addressable unit (8 bits) that can contain

basic character set. It is an integer type. Actual type
can be either signed or unsigned depending on the
implementation.

signed char Same size as char, but guaranteed to be signed

unsigned char Same size as char, but guaranteed to be unsigned

short
short int
signed short
signed short int

short signed integer type. At least 16 bits in size

unsigned short
unsigned short int

Same as short, but unsigned

int
signed int

Basic signed integer type. At least 16 bits in size

unsigned
unsigned int

Same as int, but unsigned

10

Type Explanation
long
long int
signed long
signed long int

long signed integer type. At least 32 bits
in size

unsigned long
unsigned long int

Same as long, but unsigned

long long
long long int
signed long long
signed long long int

long long signed integer type. At least
64 bits in size (specified since the C99
version of the standard).

unsigned long long
unsigned long long int

Same as long long, but unsigned
(specified since the C99 version of the
standard).

11

Type Explanation
float Single-precision floating-point format is a

computer number format that occupies 4 bytes
(32 bits) in computer memory and represents a
wide dynamic range of values by using a floating
point.

double Double-precision floating-point format is a
computer number format that occupies 8 bytes
(64 bits) in computer memory and represents a
wide dynamic range of values by using floating
point.

long double Extended precision floating-point type. Unlike
types float and double, it can be either 80-bit
floating point format, or IEEE 754 quadruple-
precision floating-point format if a higher
precision format is provided.

12

long double

The 80-bit floating point format was widely available by 1984
after the development of C and similar computer languages,
which initially offered only the common 32- and 64-bit floating
point sizes.

13

Type Option Approximate
size in bytes Operating range

char char 8 -127 ÷ 127

unsigned char 8 0 ÷ 255

signed char 8 -127 ÷ 127

int int (signed int, short int,
signed short int)

16

-32767 ÷ 32767

unsigned int (unsigned
short int)

16

0 ÷ 65535

long int (signed long int) 32

-2.147.483.647 ÷
2.147.483.647

unsigned long int 32 0 ÷ 4.294.967.295

float float 32 ~ +/-3.4×10-38 ÷
+/-3.4×1038

double double 64 ~ +/-1.7×10-308 ÷
+/-1.7×10308

long double 80 ÷ 128 ~ +/-3.4×10-4932 ÷
+/-3.4×104932

Some C versions

14

Notes:
• The actual size of integer types varies by

implementation.
• The standard only requires size relations

between the data types and minimum
sizes for each data type.

• the long long is not smaller than long,
which is not smaller than int, which is not
smaller than short.

15

Notes:
• char size is always the minimum

supported data type, all other data types
can't be smaller.

• The minimum size for char is 8 bit, the
minimum size for short and int is 16 bit, for
long it is 32 bit and long long must
contain at least 64 bit.

• Many conversions are possible in C.

16

Conversions in C
• Implicit conversion

– If there are several types of data, then all of them will
be converted to the larger one

• By assignation
– when "equal" operator is involved, then the type of

right side result is converted to the type of the left side.

• Logic conversion
– when logic operators are involved

17

Explicit type conversion
(cast conversion)

float a = 1.3;
double b = 2.5;
long c = 3.4;
int x;
…
x = (int)a + (int)b + (int)c;

Note:
• the result is x == 9
• if implicit conversion would be used (as with “x = a + b + c"),

result would be equal to 7

18

Variables
• Variables are simply names used to refer

to some location in memory.

• Types of variables:
– Local variables
– Global variables

19

A more comprehensive
classification

• Automatic variables
– variables which are allocated and deallocated automatically

when program flow enters and leaves the variable's context
– an automatic variable is a variable defined inside a function

block
• External variables

– variable defined outside any function block
• Static local variables

– variables that have been allocated statically — whose lifetime
extends across the entire run of the program

• Register variables
– register allocation is the process of assigning a large number of

target program variables onto a small number of CPU registers

20

Automatic variable
• The term local variable is usually synonymous

with automatic variable, since these are the
same thing in many programming languages,
but local is more general.

• Most local variables are automatic local
variables, but static local variables also exist,
notably in C.

• Automatic variables may be allocated in the
stack frame of the procedure in which they are
declared; this has the useful effect of allowing
recursion and re-entrancy.

• The specific keyword is auto (not compulsory).

21

External variables
• As an alternative to automatic variables, it is possible to

define variables that are external to all functions
(variables that can be accessed by name by any
function).

• An external variable may also be declared inside a
function. In this case the extern keyword must be used,
otherwise the compiler will consider it as a definition of a
local variable, which has a different scope, lifetime and
initial value. This declaration will only be visible inside
the function instead of throughout the function's module.

• An external variable can be accessed by all the functions
in all the modules of a program. It is a global variable.

22

Static local variables
• static variable is a variable that has been

allocated statically — whose lifetime extends
across the entire run of the program.

• This is in contrast to the more ephemeral
automatic variables (local variables are
generally automatic), whose storage is allocated
and deallocated on the call stack.

• Static variables are declared as such with a
special storage class keyword (static).

23

Register variables
• For efficiency, the optimizer will try to allocate some

of local variables in processor registers.
• In most register allocators, each variable is either in a

register or in memory.
• If a variable can not be assigned a register then all of

the variable's usage, including its definition, is
preceded by a load from memory.

• The specific keyword is register (not compulsory).
• The register must be big enough to host that variable.

24

Conversion format specifiers

• A conversion format specifier
consist of both % (percent
character) and a terminating
conversion character that
indicate the type of variable that is
used.

25

Conversion
format specifier

Type of associate variable

%c single character
%s string
%d integer
%u unsigned decimal integer
%p pointer
%f float
%lf double
%Lf long double

26

Note:

%5d – is associated with an integer that
get maximum 5 character positions with
right alignment

%-5d – is associated with an integer that
get maximum 5 character positions with
left alignment

27

Escape (backslash \) character
• C programming language specifies the

doublequote character (") as a delimiter for a
string literal.

• An escape character is a character which
invokes an alternative interpretation on
subsequent characters in a character sequence.

• The backslash (\) escape character typically
provides special ways to treat the following part
of a string or introduce a new character.

28

Note:
\" becomes " inside a string

Escape (backslash \)
character

Effect in a string

\n new line
\t tab
\b backspace
\v vertical tabulation
\\ backslash character
\/ slash

29

ASCII code

• The American Standard Code for
Information Interchange (ASCII) is a
character-encoding scheme originally based
on the English alphabet that encodes 128
specified characters (the numbers 0-9, the
letters a-z and A-Z, basic punctuation
symbols, control codes, and a blank space)
into the 7-bit binary integers.

30

ASCII includes definitions for 128
characters:
• 33 are non-printing control characters

(many now obsolete)

• 95 printable characters, including the
space (which is considered an invisible
graphic)

31

32

Example Hex Code
ESC 1B

1
2
:
9

31
32
:

39
0 30

A
B
:

41
42
:

a
b
:

61
62
:

33

Standard I/O routines

• are substitute for missing of I/O instructions

• C programming language provides many
standard library functions for input and
output.

• These functions make up the bulk of the C
standard library header <stdio.h> (also in
<conio.h> and <stdlib.h>)

34

A. General output routines
1. printf function

• int printf (const char * format, ...);

• Writes the C string pointed by format to the standard
output.

• If format includes format specifiers (subsequences
beginning with %), the additional arguments following
format are formatted and inserted in the resulting string
replacing their respective specifiers.

• Ex.:
printf(“\n Result %d \n”, x);

35

2. puts function
• int puts (const char * str);

• Writes the C string pointed by str and
appends a newline character ('\n').

• Ex.:
printf(“Message \n”); puts(“Message”);

36

3. putchar function

• int putchar (int character);

• Writes a character to the output

• Ex.:
#include <stdio.h>
int main()
{ char c;
for (c = 'A' ; c <= 'Z' ; c++) putchar(c);
return 0;
}

37

4. putch function
• int putch (int character);

• putch displays any alphanumeric
characters to the standard output device. It
displays only one character at a time.

38

B. General input routines
1. scanf function
• int scanf (const char * format, ...);
• Reads data and stores them according to the

parameter format into the locations pointed by
the additional arguments.

• Ex.:
scanf(“%d %d”, &x, &y);
scanf(“%d, %d”, &x, &y);

39

2. gets function
• char * gets (char *str);

• gets() accepts any line of string including
spaces from the standard input device
(keyboard).

• gets() stops reading character from
keyboard only when the enter key is
pressed.

40

#include<stdio.h>
#include<conio.h>

int main()
{
char a[20];
gets(a);
puts(a);

getch();
}

41

3. getchar function
• int getchar (void);

• getchar() accepts one character type data
from the keyboard.

• Ex
variable_name = getchar();

42

#include <stdio.h>
int main ()
{ char c;

printf("Enter character: ");
c = getchar();

printf("Character entered: ");
putchar(c);
return(0);

}

43

4. getch function
• int getch (void);

• getch() accepts only single character from
keyboard.

• The character entered through getch() is
not displayed in the screen (monitor).

44

5. getche function
• int getche (void);

• Like getch(), getche() also accepts only
single character, but unlike getch(),
getche() displays the entered character in
the screen.

45

synthesis

Output functions Input functions
printf scanf

puts gets

putchar getchar

putch getch
getche

46

Expressions
• An expression in a programming language is a

combination of explicit values, constants,
variables, operators, and functions that are
interpreted according to the particular rules of
precedence and of association for a particular
programming language, which computes and
then produces another value.

• This process, like for mathematical expressions,
is called evaluation.

• The value can be of various types, such as
numerical, string, and logical.

47

• primary expressions

• list of expressions

48

Order of operations
• In computer programming, the order of

operations (operator precedence) is a rule
used to clarify which procedures should be
performed first in a given mathematical
expression.

• The operators in C have a strict
precedence level.

49

1 () [] -> . :: Grouping, scope, array / member access

2 ! ~ - + * & sizeof type cast ++x - -x (most) unary operations, sizeof and type casts

3 * / % Multiplication, division, modulo

4 + - Addition and subtraction

5 << >> Bitwise shift left and right

6 < <= > >= Comparisons: less-than, ...

7 == != Comparisons: equal and not equal

8 & Bitwise AND

9 ^ Bitwise exclusive OR

10 | Bitwise inclusive (normal) OR

11 && Logical AND

12 || Logical OR

13 ?: = += -
= *= /= %= &= |= ^= <<= >>=

Conditional expression (ternary) and assignment
operators

14 , Comma operator

50

Automated conversion inside
expressions

• Usually, the implicit conversion is involved
(see a previous slide)

• Rule of implicit conversion in C

51

The Rule of Implicit conversion
It works when a binary operator is applied to two operands.

The steps of the rule :
• First convert the operands of type char and enum to the

type int;
• If the current operator is applied to operands of the same

type then the result will be the same type. If the result is
a value outside the limits of the type, then the result is
wrong (exceedances occur).

• If the binary operator is applied to operands of different
types, then a conversion is necessary, as in the following
cases:

52

– If one operand is long double, therefore the other one is
converted to long double and long double is the result type.

– Otherwise, if one operand is double, therefore the other one is
converted to double and double is the result type.

– Otherwise, if one operand is float, therefore the other one is
converted to float and float is the result type.

– Otherwise, if one operand is unsigned long, therefore the other
one is converted to unsigned long and unsigned long is the
result type.

– Otherwise, if one operand is long, therefore the other one is
converted to long and long is the result type.

– Otherwise, if one operand is unsigned, therefore the other one
is converted to unsigned and unsigned is the result type.

53

Example:
• …

float x;
double y;
char c;
int i;
. . .

54

Operators in C
• Programming languages typically support

a set of operators, which differ in the
calling of syntax and/or the argument
passing mode from the language's
functions.

• C programming language contains a fixed
number of built-in operators.

55

1 () [] -> . :: Grouping, scope, array / member access

2 ! ~ - + * & sizeof type cast ++x - -x (most) unary operations, sizeof and type casts

3 * / % Multiplication, division, modulo

4 + - Addition and subtraction

5 << >> Bitwise shift left and right

6 < <= > >= Comparisons: less-than, ...

7 == != Comparisons: equal and not equal

8 & Bitwise AND

9 ^ Bitwise exclusive OR

10 | Bitwise inclusive (normal) OR

11 && Logical AND

12 || Logical OR

13 ?: = += -
= *= /= %= &= |= ^= <<= >>=

Conditional expression (ternary) and assignment
operators

14 , Comma operator

