
Computers
Programming

Course 4
Iulian Năstac

2

Recap from previous course
Operating Systems

• The operating system
is an essential
component in a
computer.

3

Recap
OS Classification
• batch processing;

• multiprogramming;

• time sharing;

• multiprocessing.

4

Recap
Other classification considers the
following operating systems:
• Real-time

• Multi-user

• Multi-tasking / single-tasking

• Distributed

• Embedded

5

Recap
Writing information on mass
memory (HDD)

• A hard disk drive (HDD) can be divided into multiple
logical storage units (partitions)

• A separate file systems can be used on each partition

• Most used file system architectures:
– File Allocation Table (FAT)
– High Performance File System (HPFS)
– New Technology File System (NTFS)

6

Software's classification in a PC
• Operating system(s)

• A various collection of electronic files and
directories, which includes: user files,
programs, data, etc.

• Programming languages

7

Programming Languages
Definition:

A programming language is a formal
language based on instructions, which
is designed to implement a specified
task.

8

Kinds of programming languages

• Low level (assembling languages)

• High level
– Based on interpreters (BASIC, MATLAB, JAVA, etc).
– Based on compilers (FORTRAN, PASCAL, ADA, C,

etc.)

9

Interpreter

• An interpreter translates the
source code into some efficient
intermediate representation and
immediately execute this.

10

Compiler

• A compiler transforms the source
code written in a programming
language (the source) into an object
code or further in an executable
program.

11

An extended classification of the
programming languages

• High level (Ada, Pascal, Fortran, etc.)
– programming languages with strong abstraction from the

details of particular computer

• Medium level (C, C++, FORTH, etc.)

• Low level (assembly languages)
– programming languages that provide little or no

abstraction from a computer's instruction set architecture

12

C programming language
• 1966 Martin Richards (University of Cambridge)

developed BCPL (Basic Combined
Programming Language)

• 1969 Ken Thomson with contributions from
Dennis Ritchie – B programming language

• 1969-1973 Dennis Ritchie – C programming
language

13

Development of C programming
language

• Beginning of ’70 – UNIX code was rewritten
in C
– Since then there is always a C compiler (Unix's

C shell) embedded in every UNIX (even in
some UNIX-like) operating system.

• 1978 Dennis Ritchie and Brian Kernighan
had elaborated a famous book, "The C
Programming Language".

14

Languages based on C
• C#, C++, Objective-C
• D
• Go
• Rust
• Java, JavaScript
• Limbo,
• LPC
• Perl
• PHP
• Python
• Verilog

15

A standard was needed ...
• Before the end of '80, many users relied on an informal

specification contained in the book of Dennis Ritchie and Brian
Kernighan (version is generally referred to as "K&R" C)

• 1989 the American National Standards Institute published a
standard for C (generally called "ANSI C" or "C89")

• 1990 - ISO approved an international standard (called "C90").

• 1995 - ISO released an extension of C standard

• 1999 - a revised standard (known as "C99")

• December 2011– another revised version of the standard (C11)

• 2017-2018 - a new version of the standard ("C18")

16

C++ programming language standard
• 1998 C++ standard was ratified as ISO/IEC 14882:1998.

• 2003 - the standard was amended by the technical
corrigendum, ISO/IEC 14882:2003.

• 2011 - extending C++ with new features was ratified as
ISO/IEC 14882:2011 (informally known as C++11)

• 2014 - C++14 standard supersedes C++11 with new features
and an enlarged standard library

• 2017 - The C++17 specification reached the Draft International
Standard (DIS) stage in March 2017.

• C++20 standard is expected to be published before the end of
2020.

17

Portability

• Portability is the property of a software
to work properly on an changed
environment.

18

Porting

• Porting is the process of adapting software.

• This way an executable program can be
used for a computing environment that is
different from the one for which it was
originally designed.

• The lower the cost of porting software,
relative to its implementation cost, the more
portable it is said to be.

19

Obs.
• The portability concept can be established

at different levels:
– description on natural language
– description on pseudocode
– logic diagram
– source program
– compiling
– link-editing
– executable program

20

description
on natural
language

description
on pseudo-

code

logic
diagram

source
program compiling link-

editing

executable
program

A linker or link editor is a computer program that takes one
or more object files generated by a compiler and combines
them into a single executable program.

21

The compiler is a complex program which
convert the instructions from source language
into machine language (assembler code).

• The result is an object program.

• If the link-editor is included in compiler
then the result is an executable file.

The Process of Writing a C
Program

22

23

The main properties of C
programming language

1. Portability
2. Data types
3. Errors control
4. Work at assembler level
5. Few keywords
6. Structured language
7. Programmers' language

24

1. Portability of C programming
language

• According to experienced software
engineers, the C programming language
seems to be the most portable support for
a designed program.

25

2. Data types
• four basic arithmetic type specifiers:

– char
– int
– float
– double

• optional specifiers:
– signed,
– unsigned
– short
– long

26

Type Explanation
char Smallest addressable unit (8 bits) that can contain

basic character set. It is an integer type. Actual type
can be either signed or unsigned depending on the
implementation.

signed char Same size as char, but guaranteed to be signed

unsigned char Same size as char, but guaranteed to be unsigned

short
short int
signed short
signed short int

short signed integer type. At least 16 bits in size

unsigned short
unsigned short int

Same as short, but unsigned

int
signed int

Basic signed integer type. At least 16 bits in size

unsigned
unsigned int

Same as int, but unsigned

27

Type Explanation
long
long int
signed long
signed long int

long signed integer type. At least 32 bits
in size

unsigned long
unsigned long int

Same as long, but unsigned

long long
long long int
signed long long
signed long long int

long long signed integer type. At least
64 bits in size (specified since the C99
version of the standard).

unsigned long long
unsigned long long int

Same as long long, but unsigned
(specified since the C99 version of the
standard).

28

Type Explanation
float Single-precision floating-point format is a

computer number format that occupies 4 bytes
(32 bits) in computer memory and represents a
wide dynamic range of values by using a floating
point.

double Double-precision floating-point format is a
computer number format that occupies 8 bytes
(64 bits) in computer memory and represents a
wide dynamic range of values by using floating
point.

long double Extended precision floating-point type. Unlike
types float and double, it can be either 80-bit
floating point format, or IEEE 754 quadruple-
precision floating-point format if a higher
precision format is provided.

29

long double

The 80-bit floating point format was widely available by 1984
after the development of C and similar computer languages,
which initially offered only the common 32- and 64-bit floating
point sizes.

30

Notes:
• The actual size of integer types varies by

implementation.
• The standard only requires size relations

between the data types and minimum
sizes for each data type.

• the long long is not smaller than long,
which is not smaller than int, which is not
smaller than short.

31

Notes:
• char size is always the minimum

supported data type, all other data types
can't be smaller.

• The minimum size for char is 8 bit, the
minimum size for short and int is 16 bit, for
long it is 32 bit and long long must
contain at least 64 bit.

• Many conversions are possible in C.

32

3. Errors control

• Excepting syntax errors there are no other
control

• There are no control over dimensions of
variables, pointers, etc.

33

4. Work at assembler level

• There is the possibility to work directly with
bits, octets, words and pointers.

• C instructions require a minimum number
of processor instructions when are
compiled.

34

5. C Language Keywords
auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

35

C89 Standard

• There are only 32 key-words on ANSI C
standard:
– 27 from Kernighan & Ritchie book

• Other languages have at least twice more
keywords.

36

C99 adds five more keywords:

_Bool

_Complex

_Imaginary

inline

restrict

37

C11 adds seven more keywords:

_Alignas

_Alignof

_Atomic

_Generic

_Noreturn

_Static_assert

_Thread_local

38

6. Structured language
• Structured programming is a programming

paradigm aimed on improving the clarity, quality,
and development time of a computer program by
making extensive use of subroutines, block
structures and for and while loops

• This is in contrast to using simple tests and
jumps such as the goto statement which is both
difficult to follow and to maintain.

39

Notes:

• Structured programs are often composed
of simple, hierarchical program flow
structures.

• These are sequence, selection, and
repetition

40

sequence

41

selection

42

repetition

43

Note:

• compartmentalization – the facility of
splitting and hiding (from the rest of
program) the whole information and
instructions that are necessary to fulfill a
particular task

• This is a characteristic of C

44

Note:
• The main structural component in C is the

function concept.

• The main possibility to obtain the
compartmentalization is to use a block of
instructions grouped by special brackets
(accolade)

{
…..
}

45

7. Programmers' language
• C is often used for "system programming",

including implementing operating systems and
embedded system applications.

• An active programmer needs:
– code portability and efficiency
– ability to access specific hardware addresses
– ability to pun types to match externally imposed data

access requirements
– low run-time demand on system resources

• C is sometimes used as an intermediate language
by implementations of other languages.

46

The structure of a C program
• global statements:

– inclusions of header files
– statements of constants and global variables
– declarations of local functions

• function main()

• other functions

47

Notes:

• keywords are written with lowercases

• a C program must contain a single main
function, and only one.

• the C standard library and C++ standard
library traditionally declare their standard
functions in header files.

48

Header file
• Each header file contains one or more

function declarations, data type definitions,
and macros.

Note: New header files were always added
when a newer improved standard was
released

49

Some basic header files
<stdio.h> Defines core input and output functions

<stdlib.h> Defines numeric conversion functions,
pseudo-random numbers generation
functions, memory allocation, process
control functions

<string.h> Defines string handling functions.

<math.h> Defines common mathematical functions.

50

C preprocessor
• The preprocessor provides the ability for:

– inclusion of header files

– macro expansions

– conditional compilation

51

Including files

• The preprocessor replaces the line
#include <stdio.h> with the text of the file
'stdio.h', which declares the printf()
function among other things

#include <stdio.h>

int main(void)

{ printf("Hello, world!\n");

return 0;

}

52

Statements and macro definition

• Define a constant:
#define PI 3.14159

• Define a macro function:
#define ABS(a) (a<0) ? –a : a

53

Conditional compilation
• Conditional compilation allows the compiler to

produce differences in the executable according
with some parameters.

• This technique is commonly used when these
differences are needed to run the software on
different platforms, or with different versions of
required libraries or hardware.

54

if-else directives
• The if-else directives:

#if
#ifdef
#ifndef
#else
#elif
#endif

can be used for conditional compilation.

